Enabling advanced automotive lighting applications with moldable optical silicones

Jake Steinbrecher, Technical Service and Development Engineer
Dow Performance Silicones – Lighting
Contributors: Michelle Cummings, Francois de Buyl, Kevin Van Tiggelen

Advanced lighting for automotive
Presented: 31 May 2019
Dark or low-lighting conditions increase likelihood of a collision\(^1\)

- Dark driving – 25% of automotive travel
 - 52% of driver fatalities
 - 71% of pedestrian deaths
- Largest contributing factors
 - Limited forward illumination – efficacy of US compliant headlamps
 - Speed of travel – low beam usage adequate for only 39-52 mph

2. FHWA Lighting Handbook: https://safety.fhwa.dot.gov/roadway_dept/night_visib/lighting_handbook/#a1

Figure 1: Fatal crash rates per VMT for Day and Night (2009 FARS and NHTS data)\(^2\)
Transportation Lighting: Potential Solutions

<table>
<thead>
<tr>
<th>Potential solution</th>
<th>Limitations¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase roadway illumination</td>
<td>Glare and reflections, infrastructure needed</td>
</tr>
<tr>
<td>Increase high beam usage by drivers</td>
<td>Glare and concern for oncoming drivers</td>
</tr>
</tbody>
</table>

Adaptative driving beam (ADB) implementation:
Long range visibility without causing discomfort, distraction or glare

Dow is the world leader in Silicone technology with 10+ years of optical silicone experience and five years of use in production ADB systems.

Moldable silicones are high performance materials that provide:

- Improved design flexibility (form factor, undercuts, optical features)
- Strong optical performance
- Superior environmental stability
THE NEW Dow

Back integrated feedstocks

Building blocks

Material platforms

Building blocks

Product development

Technology capabilities

Target markets

Building blocks

Ethylene

Propylene

Silicones

Building blocks

Cellulosics

Acrylics

Propylene Oxide

Ethylene Oxide

Polyolefins & elast.

Silicones

Various others

High-throughput research

Catalyst discovery & ligand synthesis

Polymer science

Material science

Formulation sciences

Process engineering

High-performance computer modeling

Application development

Target markets

Packaging

Infrastructure

Consumer
DOW SILICONES: FROM SAND TO FUNCTIONALITY

Sand (SiO₂) → Silicon (Si) → Methylchlorosilanes → Silicones

Energy → Reaction(s) → Reaction(s)

Low cost integration and focus on process innovation

Materials for key applications

Focus on product and application innovation

Functional silicones

Organic functionality

Copolymers

Silicone fluid

Silicone elastomer

Silicone resin

Fillers additives

Polymerization & purification
A NEW MATERIAL: MOLDABLE OPTICAL SILICONES

An enabling technology that is both **clear and tough**

- Excellent environmental stability, optical performance and design flexibility

LIQUID SILICONE RUBBER (LSR):
Silica particle reinforced: *hazy material*

MOLDABLE OPTICAL SILICONES (MS):
Siloxane resin reinforced: *clear material*

- Molds like LSR
- Transmits light like glass
A NEW MATERIAL: MOLDABLE OPTICAL SILICONES

Moldable silicones *are:*

- Injection moldable optical silicone materials for unique applications, including lenses, light guides, diffusers, reflectors, etc.

Moldable silicones *can:*

- Precisely control light, ‘bend’ light, replicate nano-scale optical features, uniformly diffuse or reflect light, be used in harsh environments/applications, and more...
How Chemistry Relates to End-Use Properties

What unique capabilities do these properties **enable**?

<table>
<thead>
<tr>
<th>Property</th>
<th>SILASTIC™ Moldable Silicone</th>
<th>PC</th>
<th>PMMA</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light transmission</td>
<td>94%</td>
<td>88-90%</td>
<td>93%</td>
<td>95%</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.42</td>
<td>1.58</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>UV resistance</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Chemical resistance</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Service temperature maximum (°C)</td>
<td>>150</td>
<td>120</td>
<td>90</td>
<td>>200</td>
</tr>
<tr>
<td>Yellowing*</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Micro detail replication</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Ability to mold large and thick parts</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Maximum thickness</td>
<td><0.5 mm</td>
<td>2 mm</td>
<td>2 mm</td>
<td>–</td>
</tr>
<tr>
<td>Draft angle (manufacturing)**</td>
<td><0°</td>
<td>1 to 2°</td>
<td>1 to 2°</td>
<td>–</td>
</tr>
<tr>
<td>Weight</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Flexible material – Integration</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
MOLDABLE SILICONE ENABLED DESIGN: REFERENCES

ADAPTIVE DRIVING BEAM: LIGHT ENGINE
high-power LED matrix w/\textit{silicone} primary lens

REAR LAMP/INDICATOR: LIGHT GUIDE
LED linear w/\textit{silicone} coupler and guide

*Designs are for reference only and are not meant to duplicate or infringe on any other design
Moldable optical silicones: Material performance
Heat influences viscosity of moldable silicone – very sensitive to temperature

Pros:
- Ease of fabrication through liquid injection molding
- Good flow allows for complex part geometry
- Excellent reproduction of mold features

Cons:
- Easily turbulent
- Higher potential for flash in tooling
Moldable Silicones: Cure

Cure properties *tuned* for optic and mold design

- Cure profile allows for fill of complex geometry in liquid state
- Reduced gelation period can reduce cycle time and defects
- Quick to cured and handle-able part

Moldflow analysis in place to help better understand and predict material behavior
MATERIAL PERFORMANCE

- Good flow in complex parts
- Cure profile allows for fill in liquid state

- Excellent reproduction of mold features

Tooling

Molded silicone
Moldable optical silicones: Mechanical and optical performance
Moldable Silicones: Mechanical Properties

Soft & pliable or firm and tough
- High elongation and Shore A durometer → impact and scratch resistance
- Range of hardness’ and material toughness → accurate part fixation, high IP rating

Light weight optics
- Silicones are less dense than incumbent material → less weight in auto lighting
- Optics lighter than with alternatives for a given volume
MECHANICAL PERFORMANCE

- Impact and scratch resistant

- Minimal compression set and accurate part fixation

- Optics lighter than with alternatives for a given volume

Volume: ~3.5 cc
Silicone: 3.7g
PMMA/PC: 4.2g

Volume: ~173 cc
Silicone: 185g
PMMA/PC: 206g
Moldable Silicones: Optical Properties

Excellent optical performance
- High light transmittance
- Low haze and scatter

Reliable in extreme conditions
- Robust to thermal and hydrothermal aging

Optics for many applications
- Freeform collimators; secondary lenses, micro-lens arrays; light guides
OPTICAL PERFORMANCE

- High light transmittance
- Low haze and scatter

Robust thermal and hydrothermal aging

<table>
<thead>
<tr>
<th>Weathering conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial non-aged lenses</td>
</tr>
<tr>
<td>UV/65°C 6000 hrs</td>
</tr>
<tr>
<td>130°C 6000 hrs</td>
</tr>
<tr>
<td>85% rh/ 85°C 8 weeks</td>
</tr>
</tbody>
</table>

(*) PC and PMMA were NON-STABALIZED grades against UV
Moldable optical silicones: In-application performance
MOLDABLE SILICONES: IN APPLICATION

Industry tested

- Weathering: FMVSS 108 Appendix H
 - *AMECA Certified Materials*
- Impact: SAE J400
- Abrasion: FMVSS 108 Appendix J
- Chemical resistance: GMW 14334
- Flammability: FMVSS 302
- and more...

FMVSS 108 Appendix H

SILASTIC™ MS-1002 Moldable Silicone

PC-coated

GMW 14334
MOLDABLE SILICONES: APPLICATION EXAMPLES

- Interior: Light guides
- Interior: Branding
- Exterior: A-Side
- Image projection
- Optical sensors
- Color mixing (white reflector)
- Co-molding
- Over-molding
Moldable silicones are high performance materials that provide:

- Improved design flexibility (form factor, undercuts, optical features)
- Strong optical performance
- Superior environmental stability

Dow is the world leader in silicone technology with 10+ years of optical silicone experience and 5 years of use in production ADB systems.
Thank you

The information contained in this communication does not constitute an offer, does not give rise to binding obligations, and is subject to change without notice to you. The creation of binding obligations will occur only if an agreement is signed by authorized representatives of Dow and your company. Any reference to competitor materials contained in this communication is not an endorsement of those materials by Dow or an endorsement by the competitor of Dow materials.

To the fullest extent permitted by applicable law, Dow disclaims any and all liability with respect to your use or reliance upon the information. DOW DOES NOT MAKE ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, WITH RESPECT TO THE UTILITY OR COMPLETENESS OF THE INFORMATION AND DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

© 2020 The Dow Chemical Company. All rights reserved. 2000006685. Form No. 11-4009-01-1120 S2D