Improving performance characteristics of polyamides

Dow offers high quality impact modifiers for engineering polymers to the automotive, consumer and E&E (Electrical and Electronics) industries. A dedicated team is focusing on supporting innovation and growth through technical expertise.

Polyamide Modification
Polyamide (nylon) thermoplastic resins offer an excellent balance of processibility and performance properties and therefore are widely used. Of the many types of polyamide available, the most popular are polyamide 6 (PA 6) and polyamide 6,6 (PA 6,6). However, some end-use applications for these resins require improved impact performance at ambient or low temperatures. For these applications, toughened grades of polyamide can be used.

Our FUSABOND™ N functional polymer grades are maleic anhydride (MAH)-grafted polymers, selected from Dow’s extensive range of polyolefin elastomers such as ENGAGE™ polyolefin elastomers and NORDEL™ EPDM. They provide compounds with high-flow impact modification for tough and super-tough PA 6 and PA 6,6 compounds, including good performance at very low temperature.

Our FUSABOND™ A is a modified ethylene-arylate copolymer. It provides compounds with a very good combination of flow and toughness for glass-filled polyamide compounds.

Our SURLYN™ ionomer grades provide good impact resistance and high gloss to polyamide. Specific grades are FDA-approved for direct food contact.

![Chemical structures of FUSABOND™ and SURLYN™](image)

Our Impact Modifiers for Polyamide 6 and 6,6
Dow offers several polymer modifier technologies that can be used for polyamide toughening. These technologies typically combine increased low-temperature impact properties, with good adhesion to the polyamide. The adhesion is achieved by the reaction of amine or carboxylic acid end-groups of the polyamide polymer with the functional group of the toughener. Selected reactions are shown to the right.

![Examples of toughened polyamide applications](image)
OUR PORTFOLIO: FUSABOND™ N, FUSABOND™ A, SURLYN™

Product Overview
The table below provides an overview of the portfolio presenting both physical characteristics and level of grafting (where applicable). Latest additions to the FUSABOND™ N portfolio are highlighted.

<table>
<thead>
<tr>
<th>Impact modifier</th>
<th>Base Polymer</th>
<th>Grafted MAH</th>
<th>Melt index (190 °C, 2.16g/min)</th>
<th>Density (g/cm3)</th>
<th>Melting peak1 (°C)</th>
<th>Glass Transition1 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSABOND™ N493</td>
<td>Polyolefin Elastomer</td>
<td>Medium</td>
<td>1.4</td>
<td>0.860</td>
<td>41</td>
<td>- 60</td>
</tr>
<tr>
<td>FUSABOND™ N598</td>
<td>Polyolefin Elastomer</td>
<td>Medium</td>
<td>2.0</td>
<td>0.870</td>
<td>54</td>
<td>- 56</td>
</tr>
<tr>
<td>FUSABOND™ N493</td>
<td>Polyolefin Elastomer</td>
<td>Medium</td>
<td>1.8</td>
<td>0.870</td>
<td>51</td>
<td>- 55</td>
</tr>
<tr>
<td>FUSABOND™ N215</td>
<td>Polyolefin Elastomer</td>
<td>High</td>
<td>1.3</td>
<td>0.875</td>
<td>63</td>
<td>- 54</td>
</tr>
<tr>
<td>FUSABOND™ N216</td>
<td>Polyolefin Elastomer</td>
<td>High</td>
<td>1.3</td>
<td>0.875</td>
<td>63</td>
<td>- 54</td>
</tr>
<tr>
<td>FUSABOND™ N308</td>
<td>Polyolefin Elastomer</td>
<td>High</td>
<td>3.7</td>
<td>0.880</td>
<td>58</td>
<td>- 49</td>
</tr>
<tr>
<td>FUSABOND™ N302</td>
<td>EPDM</td>
<td>Medium</td>
<td>1.2</td>
<td>0.875</td>
<td>37</td>
<td>- 45</td>
</tr>
<tr>
<td>FUSABOND™ N416</td>
<td>EPDM</td>
<td>High</td>
<td>23*</td>
<td>0.869</td>
<td>42</td>
<td>- 44</td>
</tr>
<tr>
<td>FUSABOND™ A560</td>
<td>Modified Ethylene Acrylate Copolymer</td>
<td>5.6</td>
<td>0.930</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURLYN™ 9520</td>
<td>Ionomer</td>
<td></td>
<td>1.1</td>
<td>0.960</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>SURLYN™ 9020</td>
<td>Ionomer</td>
<td></td>
<td>1.0</td>
<td>0.960</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>SURLYN™ 9320</td>
<td>Ionomer</td>
<td></td>
<td>0.8</td>
<td>0.960</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>SURLYN™ 1705</td>
<td>Ionomer</td>
<td></td>
<td>5.5</td>
<td>0.960</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

* Melt index measured at 280 °C, 2.16 kg
1. Measured by DSC

Product comparison of highly compatible modifier chemistries
The comparison of micrographs from impact modified PA 6,6 compounds with our different modifier chemistries shows that small particle size and uniform particle size distribution can be achieved with MAH grafted elastomers from the FUSABOND™ N family and that the higher polarity of FUSABOND™ A acrylate copolymer and SURLYN™ ionomer allows for even finer modifier particle dispersion.

20% Loading of Modifiers in PA 6,6 (TEM)

PA 6 Modification – Notched Izod Impact Resistance at 23 °C
For intermediate toughening, SURLYN™ 9020 is recommended for PA 6 besides FUSABOND™ N493. Advantages of using SURLYN™ modifier include its FDA compliance (for direct food contact), its low color, excellent surface finish and short cycle time.
OUR PORTFOLIO: for Polyamide 6 and 6,6

FUSABOND™ N493 has been a benchmark as a polyamide 6 and 6,6 impact modifier for a wide range of final applications. Adding different levels gives flexibility for the compound formulation to be adjusted to specific customer needs. The following graphs show the toughness level achieved at loadings between 5 and 20% in PA 6 and an overall performance comparison for FUSABOND™ N493 and two of the latest additions to the FUSABOND™ family: FUSABOND™ N216 and FUSABOND™ N495.

Tests conducted by Dow’s R&D department show that FUSABOND™ N495 can be used to achieve a higher performance level (performance combination in terms of stiffness/toughness and flow) compared to FUSABOND™ N493.

FUSABOND™ N215 and FUSABOND™ N216 are alternatives to meet medium impact requirements.

PA 6 toughening using impact modifier FUSABOND™ N493.

Morphology with well dispersed particles.

PA 6 toughening using different impact modifiers from the FUSABOND™ N family.

In PA 6 FUSABOND™ N495 shows the best impact performance at high and low temperature, at slightly lower modulus compared to FUSABOND™ N493.

PA 6,6 toughening using different impact modifiers from the FUSABOND™ N family.

In PA 6,6 FUSABOND™ N495 reaches a high performance level with improved compound flow over FUSABOND™ N493.
OUR PORTFOLIO: for glass-filled polyamide

This chart shows the benefits of FUSABOND™ A560 in glass fiber reinforced PA 6 compounds. FUSABOND™ A560 is in particular effective at low addition levels and has the added advantage that flexural modulus and temperature resistance are only slightly reduced. MAH-grafted tougheners like FUSABOND™ N grades at the same concentration have a higher effect on stiffness and temperature resistance.

Toughening glass-reinforced polyamide 6 with FUSABOND™ A560 and FUSABOND™ N493 (30% Glass Fiber)

FUSABOND™ A560 reduces melt viscosity in the processing shear rate region compared to FUSABOND™ N493

Compounds toughened with FUSABOND™ A560 will show better flow, lower viscosity compared to compounds toughened with the same amount (10%) of MAH-grafted high performance tougheners such as FUSABOND™ N493.

Better flow of the glass reinforced polyamide compounds provide TIER 1/ part manufacturers with manufacturing efficiency benefits such as improved mold filling and better surface appearance of the glass filled molded parts.

Contact and more information

Contact your Dow representative or visit Dow.com to learn more about how our modifier and compatibilizer solutions for engineering polymers can help meet challenging requirements in automotive, consumer and E&E applications.

With our unique back-integration through ENGAGE™ and NORDEL™, combined with our technical know-how, we feel well-positioned to support your requirements. We invite you to work with us to explore innovative solutions that will help you succeed in your market.