Release the potential of silicone performance

Silicone release coatings from Dow

SYL-OFF™
As a global leader in silicone chemistry, Dow innovation has always helped the industry develop the next standard. We’ve been exploring the potential of silicones since 1943. With our extensive global reach, we have the resources to deliver the broadest range of silicone offerings and solutions, along with the knowledge, technical support and service for all your release coating challenges, competitively priced and reliably supplied.

Meeting the needs of the global release coatings market

As a global leader in silicone chemistry, Dow innovation has always helped the industry develop the next standard. We’ve been exploring the potential of silicones since 1943. With our extensive global reach, we have the resources to deliver the broadest range of silicone offerings and solutions, along with the knowledge, technical support and service for all your release coating challenges, competitively priced and reliably supplied.

Solutions with silicones
From food and healthcare to graphic arts and labels, SYL-OFF™ brand silicone release coatings from Dow provide a range of technologies to deliver the right solution for any application.

This brochure will help you discover the many ways Dow can help you overcome your release coating challenges. We are with you throughout every step of your process—from choosing the right silicone release coating formulation and selecting the right equipment and coating technique for your substrate, to achieving success in your end-use applications. Dow will help you release the potential of silicone performance.
Silicone release coatings: from application to end use

Si coating → Substrate / liner

Liner producers, laminators, converters

End use

Silicone release coating → Substrate/liner

Facestock → Adhesive → Silicone release coating → Substrate/liner
Release coating delivery systems for different equipment and substrates

SYL-OFF™ silicone release coatings from Dow are applied at extremely low coating weights onto a wide range of substrate surfaces using many different coating techniques. The choice of coating technique is strongly influenced by the type of delivery system for the silicone release coating (solventless, solvent-based or emulsion). Optimal coating of the substrate requires the right coating process. Table 1, below, lists the SYL-OFF™ release coating delivery systems and notes the preferred processing equipment to achieve optimal coating.

Substrate compatibility
SYL-OFF™ silicone release coatings are well suited for a variety of substrates. Table 2, below, lists the SYL-OFF™ release coating families within each delivery system and notes their compatibility with a variety of substrate surfaces.

Table 1: Preferred Processing Techniques

<table>
<thead>
<tr>
<th>SYL-OFF™ brand Release Coating Delivery System</th>
<th>Metered Coating (Meyer bar/rod coaters, direct gravure, air knife, squeeze roll, reverse roll, slot die extrusion)</th>
<th>Transfer Coating (3-roll differential offset gravure, 5- and 6-roll multi-roll coat)</th>
<th>Size Press (standard size press as well as film-press or metered size-press)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solventless</td>
<td>Secondary</td>
<td>Primary</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Solvent-based</td>
<td>Primary</td>
<td>Not recommended</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Emulsion</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
</tr>
</tbody>
</table>

Primary = Preferred coating technique for application
Secondary = May be used, but not ideal

Contact your Dow representative for the coating formulation most suitable for your specific application.

Table 2: Substrate Compatibility

<table>
<thead>
<tr>
<th>SYL-OFF™ brand Release Coating Family</th>
<th>Coated Papers</th>
<th>Uncoated Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncoated Kraft MG/MF, etc.</td>
<td>Board</td>
</tr>
<tr>
<td>Solventless Platinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solventless Rhodium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent-based Platinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent-based Tin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulsion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*= generally compatible with this group of substrates
**= may be applied, but only on certain grades or within certain limitations

Contact your Dow representative for the coating formulation most suitable for your specific application.
Choose the right silicone release coating

The choice of SYL-OFF™ silicone release coating for your specific application depends not only on the available coating equipment and the substrate being used, but also on the desired release characteristics for the end-use application. (See Tables 1 and 2 in this brochure for guidance on the suitability of release coating delivery systems for specific substrate surfaces, equipment and applications.)

The performance characteristics of a laminate made using a silicone release coating can be controlled or modified to some degree through formulation and processing of the silicone. One key performance characteristic is the release profile, which can be influenced by choice of silicone system as depicted in the graph to the right. Other factors to consider are raw materials being used, such as the adhesive and substrates (both base and face substrate, where applicable).

The graph shows how different silicone coatings affect the release force as the laminate is separated at different speeds.
Overview of silicone delivery systems

Each of the SYL-OFF™ silicone release coating delivery systems – solventless, solvent-based, and emulsion – offers particular benefits based on application needs. There are also different families of SYL-OFF™ silicone release coatings within each delivery system that provide distinctive advantages depending on application, substrate or coating equipment. Table 3 compares the technologies.

Solventless – 100% solids blends of silicone polymers, typical viscosity of 200 – 800 cPs.

Solvent-based – dispersions of silicones in organic solvents. Initial viscosity of ~40,000 cPs may be reduced by adding more solvent.

Emulsion – dispersions of silicone oils in water. Typical viscosity ~40 cPs; usually further diluted in water to coat.

| Table 3: SYL-OFF™ brand silicone release coatings – Comparison of technologies |
|---|---|---|---|
| **Solventless** | **Solvent-based** | **Emulsion** |
| Platinum Catalyzed | Rhodium Catalyzed | Platinum Catalyzed | Tin Catalyzed | Platinum Catalyzed |
| **Substrates** | Least versatile but still suitable for highly calendered papers, some coated papers and films. | Generally applied to many different substrates, good anchorage. Solvent choice may be adapted to specific substrates. | Usable on a broad range of substrates. |
| **Typical Application Solids** | 100% (may be diluted in solvent if needed) | Up to 12 wt % | Up to 6 wt % | 5 - 20 wt % (Can be extended with thickeners) |
| **Typical Coat Weight** | 1.0 - 2.0 g/m² | 1.0 - 2.0 g/m² | 0.5 - 1.3 g/m² | 0.5 - 1.3 g/m² | 0.5 - 1.1 g/m² |
| **Cure – Typical Curing Temperature** | 80 - 180°C | 140 - 200°C | 80 - 180°C | 70 - 200°C | 100 - 180°C |
| **Cure Time/ Dwell Time** | 2 - 10 sec | 2 - 10 sec | 5 - 10 sec | 10 - 20 sec | 5 - 20 sec |
| **Typical Line Speed** | 100 - 800 m/min | 100 - 400 m/min | 50 - 300 m/min | 50 - 200 m/min | 100 - 600 m/min |
| **Comments/Features** | Widest product range selection. May require additives for good anchorage performance on filmic surfaces. | Specifically suitable for release of most aggressive adhesives. Require higher temperatures to cure. | Can be applied at very low coat weight. Line speed may be limited by LEL requirements for solvent. EHS concerns and expensive solvent recovery systems. | Can be applied at very low coat weight. Line speed limited by LEL requirements. Very slow cure speed, but suitable for substrates where platinum can’t be used. Very stable release. | Can be applied at low coat weight on a wide range of substrates (mainly paper-based). Potential issues for buckling/curling or cockling on paper substrates. May be combined with some non-silicone materials. |

For more information or specific questions about Dow chemistries, please contact your Dow representative.
Achieve the right silicone performance for your application

Performance modification of silicone
Platinum solventless coatings for paper

The following charts start with the basic formulation for the specific delivery system and substrate, then provide a range of SYL-OFF™ silicone release coating product options to customize performance based on your specific application needs.

Your Dow representative will help you select the coating formulation most suitable for your specific application.
Modification of Silicone Performance
Platinum Solventless Coatings for Films

Basic Formulation
SYLOFF™ SL 9106 Coating – 97.6 pbw
SYLOFF™ SL 7028 Crosslinker or SYLOFF™ 7048 Crosslinker – 3.5 pbw
SYLOFF™ 4000 Catalyst – 4.0 pbw
SYLOFF™ SL 9176 Anchorage Additive – 2 pbw
pbw = parts by weight

Modification
Change Release Profile/Level
SYL-OFF™ SL 200 Coating – Lower release force at lower peel speed
SYL-OFF™ SL 160 Coating – Flatter release profile where anchorage is not an issue

Increase Release Level
SYL-OFF™ SL 10 Release Modifier – General purpose for low levels of modification where anchorage to filmic substrate is not an issue
SYL-OFF™ SL 40 Release Modifier – High-efficiency for high modification levels where anchorage to filmic substrate is not an issue
SYL-OFF™ SL 9156 Release Modifier – High-efficiency with good anchorage to filmic surfaces

Change Cure Performance
SYL-OFF™ 7678 Crosslinker – Fast cure
SYL-OFF™ 7689 Crosslinker – Good anchorage on challenging substrates

Alternative Substrates
SYL-OFF™ SL 9110 Coating – For OPP film with lower cure temperatures
SYL-OFF™ 7702 Coating – For PET film where silicone anchorage is a significant challenge but the use of anchorage additives is not possible

Modification of Silicone Performance
Rhodium Solventless Coatings for Use with Challenging Adhesives

Basic Formulation
SYLOFF™ 7044 Coating – 97 pbw
SYLOFF™ SL 7028 Crosslinker or SYLOFF™ 7048 Crosslinker – 3 pbw
pbw = parts by weight

Modification
Increase Release Level
SYL-OFF™ 7069 Release Modifier – General purpose

Change Cure Performance
SYL-OFF™ SL 7824 Coating – Faster cure at lower levels of catalyst

Your Dow representative will help you select the coating formulation most suitable for your specific application.
Modification of Silicone Performance
Platinum Emulsion Coatings for Paper

Your Dow representative will help you select the coating formulation most suitable for your specific application.
Modification of Silicone Performance
Platinum Solvent-based Coatings for Paper and Films

Contact your local Dow representative for availability of this material in your area

Certain organotin catalysts are less suitable for the European Union due to their REACH status. Please contact your Dow representative for information on the use of organotin catalysts in the EU.

Films, Tapes and Release Liners

Modification of Silicone Performance
Platinum Solvent-based Coatings for Paper and Films

Basic Formulation
SYL-OFF™ 7362 Coating – 99 pbw
SYL-OFF™ 7387 Crosslinker or SYL-OFF™ 7215 Crosslinker – 1 pbw
Toluene solvent – dilute as needed

pbw = parts by weight

Basic Formulation
SYLOFF™ 2794 Coating* – 94.4 pbw
SYLOFF™ 2700 Catalyst** – 2.7 pbw
SYLOFF™ 7048 Crosslinker – 2.9 pbw
Heptane solvent – dilute as needed

pbw = parts by weight

Additives to Change Performance
SYL-OFF™ 297 Anchorage Additive – Increases anchorage to filmic surfaces
SYL-OFF™ 4000 Catalyst – Improves cure speed at lower temperatures
SYL-OFF™ SL 9176 Anchorage Additive – Improves anchorage on PET film

Change Cure Performance
Change Release Profile/Level
SYL-OFF™ SB 7458 Coating – Faster cure with low release force; particularly suitable for filmic substrates
SYL-OFF™ 7450 Release Coating – Lower release force
SYL-OFF™ 7046 Coating – Higher release force and improved wetting on non-polar surfaces

Increase Release Level
SYL-OFF™ 7210 Release Modifier – High-efficiency for high release force range of modification
SYL-OFF™ 7200 Low Release Force Additive – High-efficiency for low release force range of modification

Change Wetting On Films
For coating polar surfaces (PET, PC), petroleum solvent can be replaced with a combination of ethyl acetate, methyl ethyl ketone
For coating non-polar surfaces (LDPE, HDPE, OPP), petroleum solvent can be replaced with pure heptane and hexane for better wetting

Additives to Change Performance
SYL-OFF™ 297 Anchorage Additive – Increases anchorage to filmic surfaces
SYL-OFF™ 4000 Catalyst – Improves cure speed at lower temperatures
SYL-OFF™ SL 9176 Anchorage Additive – Improves anchorage on PET film

Change Wetting On Films
For coating polar surfaces (PET, PC), toluene and IPA solvent can be added (replacing heptane)
For coating non-polar surfaces (LDPE, HDPE, OPP), petroleum solvent can be replaced with pure heptane and hexane for better wetting
For coating other non-polar surfaces (LDPE, HDPE, OPP), a combination of heptane and hexane may be used for better wetting

Change Cure Performance
Change Release Profile/Level
SYL-OFF™ SB 2792* Coating – Easier release
SYL-OFF™ 7075 Coating – Tighter release

Increase Release Level
SYL-OFF™ C4-2109 Release Additive – High-efficiency for a full range of modifications

Change Wetting On Films
For coating polar surfaces (PET, PC), toluene and IPA solvent can be added (replacing heptane)
For coating non-polar surfaces (LDPE, HDPE, OPP), petroleum solvent can be replaced with pure heptane and hexane for better wetting
For coating other non-polar surfaces (LDPE, HDPE, OPP), a combination of heptane and hexane may be used for better wetting

Additives to Change Performance
SYL-OFF™ 297 Anchorage Additive – Increases anchorage to filmic surfaces
SYL-OFF™ 4000 Catalyst – Improves cure speed at lower temperatures
SYL-OFF™ SL 9176 Anchorage Additive – Improves anchorage on PET film

* Contact your local Dow representative for availability of this material in your area

** Certain organotin catalysts are less suitable for the European Union due to their REACH status. Please contact your Dow representative for information on the use of organotin catalysts in the EU.
Select the right delivery system

SYL-OFF™ silicone release coatings from Dow are used in many different applications and require specific silicone delivery systems to achieve optimal results. The following table lists a variety of typical SYL-OFF™ silicone release coating applications and the recommended delivery systems for each application.

Table 4: Applications and Delivery Systems

<table>
<thead>
<tr>
<th>Application</th>
<th>Solventless</th>
<th>Solvent-based</th>
<th>Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Platinum</td>
<td>Rhodium</td>
<td>Tin</td>
</tr>
<tr>
<td></td>
<td>Catalyzed</td>
<td>Catalyzed</td>
<td>Catalyzed</td>
</tr>
<tr>
<td>Labels</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tapes with Release Liner</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Graphic Arts</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Composite Release</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hygiene Release</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Envelope Release</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Bakery Paper</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Roofing (Self-Adhesive)</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Medical Tapes/Labels</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

* = this delivery system is recommended and typically used for this application
= this delivery system can be used, but may not achieve optimal results

Your Dow representative will help you select the coating formulation most suitable for your specific application.
For more information

For product data sheets, selection guides and an overview of Dow’s comprehensive line of products and services for the Films, Tapes and Release Liners industry, visit our website: consumer.dow.com.