

Dispelling the Myths of Heat Transfer Fluids

Kevin Connor – The Dow Chemical Company

Solutions for life.

Heat Transfer - Chill Water Loop

The Need for "Antifreeze"

- Water is almost a perfect fluid...
 - Excellent heat transfer
 - Excellent health & safety
 - Low cost
- BUT water freezes at 0°C / 32°F
- Antifreeze protects system piping and components from damage caused by freezing
 - Volume expansion due to ice crystals generates pressure which ruptures pipes and can destroy equipment

Heat Transfer Fluid "Wish List"

- Effective freeze protection
 - Freezing point below -40°C / -40°F
- Efficient heat transfer over broad temperature range
 - -15°C to 125°C / 0°F to 250°F
- No harmful effects (health, safety, environment)
 - Non-toxic, non-flammable, environmentally benign
- Non-corrosive / non-destructive to materials
 - 20+ year fluid life
- Low cost
 - Low power consumption, low capital cost, and low maintenance

Choice of Heat Transfer Fluids

- Salt based (brines)
 - Lithium bromide
 - Calcium chloride
 - Magnesium chloride
 - Sodium chloride
 - Potassium acetate
 - Potassium formate
 - Potassium carbonate
 - Betaine

- Alcohols & Glycols
 - Methanol
 - Ethanol
 - Ethylene glycol
 - Propylene glycol
 - 1,3-propanediol
 - Glycerin
- Non-aqueous Fluids
 - Mineral oils
 - Synthetics

Impact on Freezing Point

Data from Melinder 2007
"Thermophysical Properties of
Aqueous Solutions Used as
Secondary Working Fluids "

Solutions for life.

Impact on Corrosion

Corrosion

- All salts are very corrosive
 - Long term protection is impossible even with corrosion inhibitors
- Glycols or alcohols (without corrosion inhibitors) are corrosive to most metals
 - Oxidize to form acids → low pH → acidic pH is corrosive
 - Must use correct type of corrosion inhibitor technology
- Corrosion damage can occur in less than 2 years
 - Worse for high temperatures and high exposure to air or dissolved O₂

Corrosion Control

- Corrosion can be limited by control of key environmental variables
 - Design & Operation
 - Materials
 - Temperature & exposure to O₂
 - Fluid Chemistry
 - Corrosion inhibitors & pH
 - Fluid purity
- Maintain metal in passive rather than active state
 - Corrosion rate 1000 times lower

Impact on System Efficiency

* Data from Melinder 2007

"Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids "

Physical Properties @ 10°C/50°F

	1 117 010001 1 10			
Fluid Description	Freezing Point (°C)	Thermal Conductivity (W / m.K)	Volumetric Heat Capacity (kJ / L.K)	Viscosity (cP)
water	0	0.582	4.18	1.3
Methanol * 12 wt%	- 7.5	0.525	3.86	1.3
Ethanol * 15 wt%	- 7.5	0.500	3.83	2.7
Ethylene Glycol * 19 wt%	-7.5	0.501	3.94	2.0
Propylene Glycol * 20wt%	-7.5	0.484	3.86	2.8
Glycerol * 26wt%	-7.5	0.481	3.97	3.1
Mineral Oil (VG2)	-15 (pour pt.)	~0.16	~1.6	~28

Solutions for life.

System Performance

- Adding antifreeze to water negatively impacts system performance
 - Must trade performance for freeze protection
- Reduced heat transfer efficiency
 - Antifreeze decreases thermal conductivity & specific heat
 - How much will system performance be reduced?
 - Regrettably there is no "one size fits all" answer
- Increased power consumption
 - Antifreeze increases viscosity → affects pump horsepower and fluid flow

Impact on Health & Safety

- Methanol and ethylene glycol are classified as moderately toxic
 - About 125 mLs is lethal dose for typical sized adult
- Industrial ethanol (not for consumption) is denatured
 - Can contain methanol, pyridine or other (toxic) denaturants
- Only propylene glycol is formally approved by FDA
 - Direct food additive essentially non-toxic
 - Generally Regarded As Safe (GRAS)
- Alcohols are low boiling fluids with low flash points
 - Flammability and fire safety concerns

Advantages of Using Glycol

- Effective Freeze Protection
- ✓ Non-corrosive (if properly formulated)
- Relatively Efficient Heat Transfer
- ✓ No Adverse HS&E Effects
 - ✓ Heath Low toxicity (PG fluids)
 - ☑Safety Non-flammable
 - ☑Environment Readily Biodegradable
- ✓ Relatively Low Cost

Advantages of Choosing Dow

- Dow heat transfer fluids are properly formulated with corrosion inhibitors and pH buffers which
 - Passivate metal surfaces → prevent corrosion
 - Neutralize degradation compounds → prevent pH drop
 - Thermoxidatively stable → provide long term protection
- Avoid cooling tower inhibitor packages
 - Designed for water --- not glycol
- Avoid automotive coolant inhibitors
 - Designed for relatively short fluid lifetimes

DOWTHERM™ SR-1 Fluid

- Ethylene glycol-based fluid (95%)
- Fluorescent pink
- Efficient heat transfer
 - -28° to 120° C
- Provides freeze / burst protection
 - -51° C / -60° C (depending on concentration)
- Dow is the oldest back-integrated supplier of glycol based heat transfer fluids:
 - DOWTHERM™ SR-1 originated in the late 1940's

DOWFROST™ Fluid

- Propylene glycol-based fluid (96%)
- Water white
- Low toxicity fully complies with FDA & NSF regulations
 - Made with DOW PuraGuard™ Propylene Glycol USP/EP
- Efficient heat transfer
 - -18° to 120° C
- Provides freeze / burst protection
 - -51° C / -60° C (depending on concentration)

Advantages of DOW PuraGuard™

- DOWFROST™ is the only inhibited glycol made with DOW PuraGuard™ Propylene Glycol USP/EP, a pharmaceutical grade of monopropylene glycol with a specified purity of 99.8% or greater
- Competitive products are made with lower quality PG
 - Fluid lifetime & safety are compromised
- Industrial grade PG or bio-derived PG can have:
 - High aldehydes & dioxolanes → odor forming compounds
 - High ethylene glycol & diethylene glycol → toxic compounds

DOWFROST™ HD Fluid

- Propylene glycol-based fluid (94%)
- Fluorescent yellow
- Fortified inhibitor package versus regular DOWFROST™
 - Does not have same FDA / NSF approval
- Efficient heat transfer
 - -18° to 135° C
- Provides freeze / burst protection
 - -51° C / -60° C (depending on concentration)
- Available as concentrate or premixed solution
 - Customer blends available from Dow distributors

DOWFROST™ GEO 20

- Propylene glycol-based fluid (20 vol%)
 - Fluorescent yellow
- Designed for Geothermal Heat Pumps
 - Lower concentration means lower pumping cost & higher heat transfer efficiency
 - Excellent corrosion protection
 - Bio-static concentration (will not support bio-degradation / bio-fouling unless diluted)
- Operating range:
 - 23° to 212° F with 18.5° F freeze point
- Drum & smaller packages available from Dow distributors

Which Product Do I Choose?

- Ethylene glycol (EG) is moderately toxic
 - ~½ cup is lethal to an average size adult
- Propylene glycol (PG) is essentially non-toxic
 - Approved by FDA as direct food additive
- Use DOWFROST™ for low toxicity needs
 - Food processing (DOWFROST™ only)
 - Schools or hospitals (DOWFROST™HD)
- Use DOWTHERM™SR-1 for other applications
 - EG provides better performance (heat transfer & pumping power) → lower cost option

Avoid Poorly Formulated Products

Metal	Test Data	ASTM Limit
Copper	1.6	10
Solder	9.2	30
Brass	3.7	10
Steel	199	10
Cast Iron	297	10
Aluminum	88	30

Tips for Proper Operation

- Use purified water (distilled, de-ionized) for dilution
- Install and maintain "correct" glycol concentration
 - Over-dilution → causes corrosion & bio-fouling
 - Too concentrated → causes poor heat transfer
- Operate within recommended temperature ranges
 - Over-heating → compromises fluid life
- Test your fluid regularly
 - Good fluid maintenance helps prolong the life of your system

Water Quality

- Salts cause corrosion
- Hardness causes scales & sludge
- Requirements for dilution water
 - Chlorides <25 ppm
 - Sulfates <25 ppm
 - Total hardness (as CaCO₃)
 <100 ppm

Over-Dilution

- Over-dilution causes corrosion and biofouling
 - Glycol degradation
 - Unpleasant odors
- Minimum concentration
 - _ 20% 25%
- Maximum concentration
 - **-** 60% **-** 65%

Bio-fouling - customer sample with 11% propylene glycol

Over-Heating

- Fluid degradation and corrosion increase as temperature increase
 - Fluid life compromised
- Temperature limits
 - Max bulk: 250 F to 350 F
 - Max film: 300 F to 400 F

Increased time / temperature, exposure to 0_2 / air

Dow Analytical Service

- Free service if system contains more than 250 gallons of DOWTHERM™ SR-1 / DOWFROST™
- Sample analysis kits are available from Dow
 - "2 PAK's" and "6 PAK's"
- Send samples to Dow laboratory and receive comprehensive analysis & report within 2 weeks
- Detailed analysis:
 - Glycol concentration & freeze point
 - Corrosion inhibitors, pH, various contaminants
 - System maintenance recommendations

Sample Kits

Example Report

DOWFROST*

The DOW CHEMICAL COMPANY Heat Transfer Fluids

DOWFROST*

Sample Analysis Report

TEXAS OPERATIONS, 2301 BRAZOSPORT 979-238-9427

Sample Received: 01/04/2002 Sample Number 2002-001-0036 Login Number HD-2002-0007 Login Number: HD-2002-0007 Report Date: 01/24/2002

This is a copy of the report for:

Distributor:

Sample Label Description: Lasko

		New Pata	Acceptable
Арреагалсе:			
1 Color		fluorescent yellow	
Clarity		clear	clear
Sediment		none	none
Concentration & Freeze Point:			
Propylene Glycol	vol% PG	3.5	25-60
Freeze Point		10 °F (-13 °C)	
Corrosion Inhibitors:			
Iron inhibitor (phosphate)		acceptable	
Copper inhibitor (azole)		acceptable	
Fluid pH		8 8	8-10.5
Reserve Alkalinity	mLof 0.1N HCL	17.2	:-8
Corrosives & Scale Promoters:			
C'hloride	ppm Cll	3()	≪ LOO
Sulfate	ppm SO4	O	≪52.50
Total Hardness	ppm CaCO3	U3	<100
Ferrous metal corrosion rate	mils per year (mpy)	<0.05	<0.5
Copper corrosion rate	mils per year (mpy)	0.06	~*O. 5
Contaminants & Other Glycols:			
Nitrite	ppin NO2	O	<100
Nitrate	ppin NO3	97	\$100
MBT	ppm MBT	O	< 100
Ethylene Glycol	vo1% EG	О	+7.1
Diethylene Glycol	vol% DEG	U	€ 1
Triethylene Glycol	vol% TEG	O	+71

FLUID MAINTENANCE RECOMMENDATIONS:
This fluid is in good condition and is suitable for continued use. No adjustments or inhibitors are needed at this time.

* denotes a registered trademark of the Dow Chemical Company

This information is not to be taken as a warranty or representation for which we assume logal responsibility nor as permission or recommendation to practice any patented invention without a lisense. It is offered solely for your consideration, investigation and verification.

The Dow Chemical Company • Thermal Fluids Testing Lab • 1691 N. Swede Road • Midland MI 48674 For technical assistance regarding this report please contact Kevin Connor at 989-636-8690 For sales and general information about our products please contact Dow Customer Service: 1-800-447-4369

The Bottom Line

- Glycol based fluids provide excellent overall protection
- Understand the impact that glycol has on water
 - Trade off between performance versus freeze protection
- Select and use a properly formulated glycol based fluid
 - Specifically designed for HVAC applications
- Correctly installed and maintained DOWTHERM™
 and DOWFROST™ inhibited glycol heat transfer
 fluids can help protect your system for 20+ years

www.dowfrost.com