Technical Data Sheet

SYLGARD™ 527 Silicone Dielectric Gel

FEATURES & BENEFITS
- Room temperature or heat accelerated cure
- Available in clear or red
- Heat cure for increased processing speeds
- Low viscosity allows good flow under components

COMPOSITION
- Polydimethylsiloxane gel

APPLICATIONS
- SYLGARD™ 527 Silicone Dielectric Gel is suitable for sealing and protecting various PCB system assemblies, especially those with delicate components

TYPICAL PROPERTIES
Specification Writers: These values are not intended for use in preparing specifications.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>One part or Two part</td>
<td>Two</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Clear or Red</td>
<td></td>
</tr>
<tr>
<td>Viscosity Part A</td>
<td>cP</td>
<td>470</td>
</tr>
<tr>
<td>Viscosity Part B</td>
<td>cP</td>
<td>454</td>
</tr>
<tr>
<td>Viscosity (Mixed)</td>
<td>cP</td>
<td>465</td>
</tr>
<tr>
<td>Specific Gravity (Uncured)</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>Working Time at 25°C (Pot Life - Hours)</td>
<td>hr</td>
<td>1.98</td>
</tr>
<tr>
<td>Heat Cure Time (T90) at 100°C</td>
<td>minutes</td>
<td>210</td>
</tr>
<tr>
<td>Heat Cure Time (T90) at 125°C</td>
<td>minutes</td>
<td>75</td>
</tr>
<tr>
<td>Heat Cure Time (T90) at 150°C</td>
<td>minutes</td>
<td>35</td>
</tr>
<tr>
<td>Gel Hardness</td>
<td>grams</td>
<td>113</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>volts/mil</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>kV/mm</td>
<td>17</td>
</tr>
<tr>
<td>Dielectric Constant at 100 Hz</td>
<td></td>
<td>2.85</td>
</tr>
<tr>
<td>Dielectric Constant at 100 kHz</td>
<td></td>
<td>2.85</td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>ohm*cm</td>
<td>2.75E+15</td>
</tr>
<tr>
<td>Dissipation Factor at 100 Hz</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Dissipation Factor at 100 kHz</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>Linear CTE (by TMA)</td>
<td>ppm/°C</td>
<td>335</td>
</tr>
</tbody>
</table>
DESCRIPTION
Two-part gels offer more processing flexibility with the options of room-temperature with no need for ovens or heat-accelerated cure if faster processing is protect by coating, encapsulating or potting various PCB system assemblies, especially those with delicate components. Gels are a special class of encapsulant that cure to an extremely soft material. Gels cure in place to materials. Cured gels retain much of the stress relief and self-healing qualities of a liquid while providing the dimensional stability of an elastomer which is increasingly needed for delicate components. Gels have been used to isolate circuits from the harmful effects of moisture and other contaminants and provide electrical insulation for high voltages. Another use is providing stress relief to protect circuits and interconnections from thermal and mechanical stresses. Gels are usually applied in thick layers to totally encapsulate higher architectures. More recently, gels have found application in optoelectronics due to their stress relieving capability and high refractive index, as well as the stability of these properties over time.

MIXING AND DE-AIRING
Some gels are supplied in bladder packs that avoid direct air contact with the liquid gel components, allowing use of air pressure over the pack in a pressure pot for dispensing. Do not apply air pressure directly to the liquid gel surface (without the bladder pack) as the gel can become supersaturated with air and bubbling can occur when the material is dispersed and cured. Use of bladder packs prevents bubbling, maintains cleanliness and avoids gel contamination. Gels can be dispensed manually or by using one of the available types of meter mix equipment. Typically, the two components are of matched viscosities and are readily mixed with static or dynamic mixers, with automated meter-mix normally used for high volume processes. For low-volume applications, manual weighing and simple hand mixing may be appropriate. Inaccurate proportioning or inadequate mixing may cause localized or widespread problems affecting the gel properties or cure characteristics. If possible, the potential for entrapment and incorporation of gas (typically air) should be considered during design of the part and selection of a process to mix and dispense the gel. This is especially important with higher-viscosity and faster-curing gels. Degassing at > 28 inches (10–20 mm) Hg vacuum may be necessary to ensure a void-free, protective layer.

POT LIFE AND CURE RATE
Working time (or pot life) is the time required for the initial mixed viscosity to double at room temperature (RT). The cure reaction begins when Parts A and B are mixed. As the cure progresses, viscosity increases until the material becomes a soft gel. Cure is defined as the time required for a specific gel to reach 90% of its final properties. Gels will reach a no-flow state prior to full cure. Addition-cure silicone gels may be room temperature and heat cure or exclusively heat cure. Adding heat accelerates the cure reaction. Additional time should be allowed for heating the part to near oven temperature. Cure schedules should be verified in each new application.

USEFUL TEMPERATURE RANGES
For most uses, silicone gels should be operational over a temperature range of -45 to 150°C (-49 to 302°F) for long periods of time. However, at both the low- and high-temperature ends of the spectrum, behavior of the materials and performance in particular applications can become more complex and require additional considerations. For low-temperature performance, thermal cycling to conditions such as -55°C (-67°F) plus may be possible, but performance should be verified for your parts or assemblies. Factors that may influence performance are configuration and stress sensitivity of components, cooling rates and hold times, and prior temperature history. At the high-temperature end, the durability of the cured silicone elastomer is time and temperature dependent. As expected, the higher the temperature, the shorter the time the material will remain useable.

COMPATIBILITY
Certain materials, chemicals, curing agents and plasticizers can inhibit the cure of addition cure gels. Most notable of these include: organotin and other organometallic compounds, silicone rubber containing organotin catalyst, sulfur, polysulfides, polysulfones or other sulfur containing materials, unsaturated hydrocarbon plasticizers, and some solder flux residues. If a substrate or material is questionable with respect to potentially causing inhibition of cure, it is recommended that a small scale compatibility test be run to ascertain suitability in a given application. The presence of liquid or uncured product at the interface between the questionable substrate and the cured gel indicates incompatibility and inhibition of cure.

REPAIRABILITY
In the manufacture of PCB system assemblies, salvage or rework of damaged or defective units is often required. Removal of Dow dielectric gels to allow necessary repairs can be assisted by using Dow OS fluids. Additional information regarding these products is available from Dow. In addition, if only one component needs to be replaced, a soldering iron may be applied directly through the gel to remove the component. After work has been completed, the repaired area should be cleaned with forced air or a brush, dried, and patched with additional silicone gel.
HANDLING
PRECAUTIONS
PRODUCT SAFETY
INFORMATION REQUIRED FOR
SAFE USE IS NOT INCLUDED IN
THIS DOCUMENT. BEFORE
HANDLING, READ PRODUCT
AND SAFETY DATA SHEETS
AND CONTAINER LABELS FOR
SAFE USE, PHYSICAL AND
HEALTH HAZARD
INFORMATION. THE SAFETY
DATA SHEET IS AVAILABLE ON
THE DOW WEBSITE AT
WWW.CONSUMER.DOW.COM,
OR FROM YOUR DOW SALES
APPLICATION ENGINEER, OR
DISTRIBUTOR, OR BY CALLING
DOW CUSTOMER SERVICE.

USABLE LIFE AND
STORAGE
Shelf life is indicated by the “Use
Before” date found on the product
label. Refer to the product label for
storage temperature requirements.
Special precautions must be taken to
prevent moisture from contacting
these materials. Containers should be
kept tightly closed and head or air
space minimized. Partially filled
containers should be purged with dry
air or other gases, such as nitrogen.
Exposure to moisture could reduce
adhesion and cause bubbles to form.

PACKAGING
INFORMATION
In general, Dow dielectric gels are
available in batch-matched kits
containing both Part A and Part B
components. Multiple packaging sizes
are available for these products.

LIMITATIONS
This product is neither tested nor
represented as suitable for medical or
pharmaceutical uses.

HEALTH AND
ENVIRONMENTAL
INFORMATION
To support customers in their product
safety needs, Dow has an extensive
Product Stewardship organization and
a team of product safety and
regulatory compliance specialists
available in each area.

For further information, please see our
website, www.consumer.dow.com or
consult your local Dow representative.

LIMITED WARRANTY
INFORMATION – PLEASE
READ CAREFULLY
The information contained herein is
offered in good faith and is believed to
be accurate. However, because
conditions and methods of use of our
products are beyond our control, this
information should not be used in
substitution for customer’s tests to
ensure that our products are safe,
effective, and fully satisfactory for the
intended end use. Suggestions of use
shall not be taken as inducements to
infringe any patent.

Dow’s sole warranty is that our
products will meet the sales
specifications in effect at the time of
shipment.

Your exclusive remedy for breach of
such warranty is limited to refund of
purchase price or replacement of any
product shown to be other than as
warranted.

TO THE FULLEST EXTENT
PERMITTED BY APPLICABLE
LAW, DOW SPECIFICALLY
DISCLAIMS ANY OTHER
EXPRESS OR IMPLIED
WARRANTY OF FITNESS FOR A
PARTicular PURPOSE OR
MERCHANTABILITY.

DOW DISCLAIMS LIABILITY
FOR ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES.