Films, Tapes and Release Liners

3. Put the sample pieces in a 100-mL bottle with 40 mL methylisobutyl ketone; seal the bottle and put it on a mixing wheel for 30 minutes.

4. Decant the solvent and analyze by atomic absorption for silicon; report the concentration in micrograms per milliliter.

5. Calculate the percent of extractables as shown in Figure 1.

As a rule, cure becomes more complete over time. To develop a profile of the lowering levels of extractables in your silicone release coating application over time, conduct the test immediately and at 1, 7, 14 and 30 days post-cure.

Percent of Extractables as a Measure of Cure

The percent of extractables is the amount of uncrosslinked silicone that disengages from a cured release-coated sample in the presence of a solvent. The lower the percent of extractables, the more complete the cure. The most desirable percent of extractables for most applications is 5 percent or less.

How to Measure Extractables in Silicone Release Coatings Using Atomic Absorption

1. Measure the coating weight on the liner to be tested in pounds per ream.
2. Cut a 5” x 6” liner test sample into 1/2” x 1/2” pieces.

3. Put the sample pieces in a 100-mL bottle with 40 mL methylisobutyl ketone; seal the bottle and put it on a mixing wheel for 30 minutes.

4. Decant the solvent and analyze by atomic absorption for silicon; report the concentration in micrograms per milliliter.

5. Calculate the percent of extractables as shown in Figure 1.

As a rule, cure becomes more complete over time. To develop a profile of the lowering levels of extractables in your silicone release coating application over time, conduct the test immediately and at 1, 7, 14 and 30 days post-cure.

Curing is a crosslinking process. Complete curing of SYL-OFF™ silicone release coatings ensures that uncrosslinked silicones do not migrate from the release liner to the adhesive where they could affect adhesive performance. Completeness of cure is also an important factor in determining the suitability of a release liner for food contact applications.

Evaluating the Degree of Release Coating Cure

A number of variables can affect release coating cure time, temperature, humidity, the type and age of the substrate, coating weight, degree of surface penetration, degree of functionality, etc. A precise and objective tool for evaluating the degree of release coating cure can help you manage variables and improve the quality of your end-use application. The subsequent adhesion tests give a general indication of cure. Measuring the percent of extractables in the cured silicone coating gives you a more precise and objective picture of your state of cure.

Facts on File

![Formula](image)

\[
\text{Percent of Extractables} = \left(\frac{X}{Y} \right) 0.335
\]

Where:

- \(X \) = Si concentration in methylisobutyl ketone, micrograms/milliliter
- \(Y \) = Coating weight, pounds/ream

The calculation reduces to: \(\% \text{ extractables} = (X/Y) 0.335 \)

Complete Curing Ensures Optimum Release Coating Performance

Consumer Solutions
How to Measure Extractables in Silicone Release Coatings Using a Benchtop XRF Instrument

The extractable component of a cured silicone release coating may also be determined using the following procedure designed for an Oxford Lab-X 3000 XRF analyzer. (Note: This procedure may be modified for other manufacturers’ benchtop XRF instruments, but Dow experience is limited to the instrument described here.)

1. Cut 3 sample discs from the substrate using a sample punch and place the discs on a clean sheet of paper; use tweezers to handle the discs at all times.

2. Determine the silicone coat weight on each sample using the Oxford Instruments Lab-X 3000 Benchtop XRF analyzer; a sample spinner is required on the Lab-X 3000 to give the most accurate results.

3. Keep elapsed time between preparation of the coated substrate and contact with methylisobutyl ketone extraction solvent at a consistent and minimum time to prevent post cure; the shortest practical elapsed time is 5 minutes.

4. Place the 3 discs in a 100-mL bottle containing 40 mL of methylisobutyl ketone solvent; seal the bottle and put it on a mixing wheel for 30 minutes; after 30 minutes, remove the discs from the bottle using tweezers and place them on clean tissue paper; silicone coated surface up.

5. Allow the solvent to evaporate from the sample discs; DO NOT wipe or blot the sample discs.

6. Allow the sample discs to air dry for 10 minutes or longer to ensure complete evaporation of the methylisobutyl ketone.

7. Measure the final coating weight of each sample disc.

The extractable silicone present in the coating after preparation under specified conditions is determined. The quantity of extractables is expressed as a percentage of the initial coat weight. Calculate the percent of extractables as shown below:

\[
\% \text{ extractables} = \left(\frac{a - b}{a} \right) \times 100
\]

Where:
- \(a\) = Initial coat weight (before contact with methylisobutyl ketone)
- \(b\) = Final coat weight (after contact with methylisobutyl ketone)

For More Information

Visit consumer.dow.com. For easy future reference, bookmark the page and add it to your list of “Favorites.”

We’re Here to Help

Whether you are trying to solve a problem, improve your profits or take advantage of a new opportunity, the Dow team can help – with solutions, capabilities and choices you may never have imagined.

Dow is more than materials and more than silicones. We are also process optimizers, cost reducers, custom formulators, applications engineers, technology innovators, productivity experts, global market expanders and more.

Let us put our innovative thinking to work for you.

LIMITED WARRANTY INFORMATION – PLEASE READ CAREFULLY

The information contained herein is offered in good faith and is believed to be accurate. However, because conditions and methods of use of our products are beyond our control, this information should not be used in substitution for a customer's tests to ensure that our products are safe, effective and fully satisfactory for the intended end use. Suggestions of use shall not be taken as inducements to infringe any patent. Dow's sole warranty is that our products will meet the sales specifications in effect at the time of shipment. Your exclusive remedy for breach of such warranty is limited to refund of purchase price or replacement of any product shown to be other than as warranted.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, DOW SPECIFICALLY DISCLAIMS ANY OTHER EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY.

DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

*™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

© 2018 The Dow Chemical Company. All rights reserved.

Form No. 30-1071-01 A