AFFINITY™ GA Polyolefin Elastomers (POEs) offer performance, processability, and value for a range of hot melt adhesives (HMAs) that are sometimes difficult to achieve with traditional HMA formulations.
Combining powerful adhesion with a host of other attributes, AFFINITY™ GA POEs offer opportunities to create formulations that meet and potentially exceed the requirements of HMA applications.

AFFINITY™ GA 1000R POE is an innovative solution that addresses growing demand across the value chain for HMAs with excellent adhesion to hard-to-bond substrates.

Table 1: Typical Properties of Selected AFFINITY™ GA POEs(2)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>AFFINITY™ GA 1000R POE</th>
<th>AFFINITY™ GA 1900 POE</th>
<th>AFFINITY™ GA 1950 POE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density g/cm³</td>
<td>0.878</td>
<td>0.870</td>
<td>0.874</td>
</tr>
<tr>
<td>Brookfield Viscosity @ 177 °C (350 °F), cps</td>
<td>13,000</td>
<td>8,200</td>
<td>17,000</td>
</tr>
<tr>
<td>Approximate Melt Index, g/10 min (190 °C, 2.16 kg weight)(2)</td>
<td>660</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>DSC Melting Point, °C / °F(3)</td>
<td>68 / 154</td>
<td>68 / 154</td>
<td>70 / 158</td>
</tr>
<tr>
<td>Crystallinity, % (3)</td>
<td>20</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Glass Transition Temperature, °C / °F(3)</td>
<td>-58 / -72</td>
<td>-58 / -72</td>
<td>-57 / -71</td>
</tr>
</tbody>
</table>

(1) Data per tests conducted by Dow. Test protocols and additional information available upon request. Properties shown are typical, not to be construed as specifications.
(2) Value is approximate; points are outside normal testing range.
(3) Dow Method. Test protocols and additional information available upon request.

Creating stronger bonds
As a maleic anhydride (MAH) grafted polymer, AFFINITY™ GA 1000R accentuates the excellent adhesive properties inherent in all AFFINITY™ GA resins. This allows HMAs formulated with AFFINITY™ GA 1000R to take on some of the most difficult bonding challenges faced by adhesive formulators, packaging manufacturers, and brand owners:

- Low surface energy substrates, such as polyethylene (PE) or polypropylene (PP)
- Low porosity or low surface roughness substrates, such as paper or cardboard that’s coated for functionality or aesthetics
- Substrates with short fiber length due to high content of recycled material

Testing was conducted to compare the bonding of HMAs produced with AFFINITY™ GA 1000R with that of HMAs based on an Ethylene-Vinyl Acetate (EVA) and AFFINITY™ GA 1900. To help ensure the validity of the tests, the following hard-to-bond substrates were selected:

- Beverage packaging substrate from China
- Coated non-printed cardboard from South Africa

Figures 1 and 2 show significantly increased fiber tear for both substrates across a range of temperatures as the AFFINITY™ GA 1000R content increases.

Figure 1: Percent Fiber Tear of Beverage Packaging Substrate Using HMAs Formulated with Selected Base Polymers at Various Temperatures (1).

Figure 2: Percent Fiber Tear of Coated Non-printed Cardboard Using HMAs Formulated with Selected Base Polymers at Various Temperatures (1).
Increased formulation flexibility

No two hard-to-bond substrates are the same and the physical and chemical bonding depends on the nature of the substrate. AFFINITY™ GA 1000R offers formulators the ability to tailor formulations to address the specific characteristics of most HMA applications. In addition to offering an excellent alternative to incumbent materials, AFFINITY™ GA 1000R can be used in various amounts in combination with other AFFINITY™ GA polymers to offer additional performance benefits. AFFINITY™ GA 1000R, however, goes one step further. The resin itself can be tailored to adjust the levels of viscosity, MAH graft, and even cost savings.

Improved heat resistance

In addition to helping promote the adhesive properties of AFFINITY™ GA 1000R, MAH grafting helps to offer between 5 °C (9 °F) – 10 °C (18 °F) greater heat stress during transportation and storage compared to AFFINITY™ GA 1900 alone. Table 2 shows the results of testing on coated, non-printed cardboard where the highest heat resistance can be achieved with 30 wt% and 40 wt% of AFFINITY™ GA 1000R in the formulation (formulations F and G), passing the 60 °C (140 °F) heat stress test.

Table 2: Heat Stress Resistance tests of HMA Formulations with Selected Base Polymers at Various Temperatures(1).

<table>
<thead>
<tr>
<th>Heat Stress Resistance(3)</th>
<th>Formulation(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated Non-printed Cardboard (failure = cohesive)</td>
<td>40 wt% AFFINITY™ GA 1900</td>
</tr>
<tr>
<td>122 °F (50 °C)</td>
<td>131 °F (55 °C)</td>
</tr>
<tr>
<td>AFFINITY™ GA 1900</td>
<td>AFFINITY™ GA 1000R</td>
</tr>
<tr>
<td>10 wt% AFFINITY™ GA 1000R</td>
<td>30 wt% AFFINITY™ GA 1000R</td>
</tr>
</tbody>
</table>

(1) Data per tests conducted by Dow. Test protocols and additional information available upon request. Properties shown are typical, not to be construed as specifications.
(2) Basic Formulation: 40 wt% Polymer, 34.5 wt% Tackifier, 25 wt% Wax, 0.5 wt% Anti-oxidant
(3) Heat stress resistance is measured according to the “Suggested Test Method for Determining the Heat Stress Resistance of Hot Melt Adhesives”, method T-3006, prepared by the Institute of Packaging Professions (IoPP).

Let’s stick together

Dow is dedicated to offering excellent performance and value through materials, technology, and service aimed at addressing the specific needs of our customers. The addition of AFFINITY™ GA 1000R POE to the highly respected line of AFFINITY™ GA Polyolefin Elastomers (POEs) gives HMA formulators one more reason to choose Dow for performance, processing, and end-use advantages not previously achievable with some EVA formulations.

Other AFFINITY™ GA Polyolefin Elastomer (POE) grades that can be used in conjunction with AFFINITY™ GA 1000R POE are:

- **AFFINITY™ GA 1875 POE** – Designed for low application temperature hot melt adhesives (LATHMA) of 120 °C or below
- **AFFINITY™ GA 1900 POE** – Designed for LATHMAs ranging from 135 °C - 150 °C (275 - 302 °F)
- **AFFINITY™ GA 1950 POE** – Designed for standard application temperature HMAs (175 °C [347 °F])
Notice: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, the Customer is responsible for determining whether products and the information in this document are appropriate for the Customer's use and for ensuring that the Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Dow assumes no obligation or liability for the information in this document. No warranties are given; all implied warranties of merchantability or fitness for a particular purpose are expressly excluded. This document is intended for global use.

North America
- **U.S. & Canada**: +1 800 441 4369, +1 989 832 1426, +1 800 441 4369
- **Mexico**: +1 800 441 4369

Europe/Middle East
- **Italy**: +31 115 672626, +800 783 826
- **South Africa**: +800 99 5078

Latin America
- **Argentina**: +54 11 4319 0100
- **Brazil**: +55 11 5188 9000
- **Colombia**: +57 1 219 6000
- **Mexico**: +52 55 5201 4700

Asia Pacific
- **Asia Pacific**: +800 7776 7776, +800 7965 5392

Visit dow.com or dowelastomers.com for more information.

© TM Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Form no: 258-13521-0916FTI