# Silicone elastomers for electric vehicles

North American product selection guide





### The silicone difference.

With materials engineered to offer high strength, rapid curing, UL-ratings, and other critical properties, Dow continues to offer innovative products that address the challenges of the rapidly changing electric vehicle (EV) landscape.

Dow silicone elastomer materials have decades of successful performance in a wide range of automotive applications. These innovative materials are helping to make electric vehicle components safer while offering options to challenges in protection and assembly, and continue to support advancements associated with xEV component and lithium-ion battery designs and production. At Dow, we're dedicated to sustainability in our materials engineering, and our global footprint helps EV component manufacturers and OEMs worldwide create new innovations in transportation.

This guide will be helpful in determining which elastomers are best suited for your specific application. We've identified materials and technologies in seven EV applications, and we'll look at some of the products' features and benefits to help narrow your selection. Note that the products in this brochure are available in North America only, and are just a sampling of our product portfolio as there are many products available globally. In addition, our specialists are continuously working on new product development. If you need different product specifications or have a specific challenge, contact your Dow technical support representative.

### HCRs and LSRs for busbars, Inherent benefits of Synthetic leather for cables, electrical connections interior cabin and seating silicone elastomers: · Robust mechanical properties · Exceptional environmental and thermal resistance · Wide service temperature (-40°C to 200°C typical) · Excellent flexibility and resistance to cracking Tunable processing parameters Self-sealing · Electrically insulating tire material Pigmentable LSRs and F-LSRs for fuel cell assembly Airbag coatings and sealant Moldable optical materials for headlamps and lightguides

# SILASTIC<sup>™</sup> High Consistency Silicone Rubber (HCR) for flame resistant and ceramifying applications in electric vehicles.

Breakthrough technologies are driving notable innovation in electric vehicle powertrain systems. In addition to increased performance, key design trends include targeted improvements in safety, efficiency, component durability, driving experience, and enhanced reliability.

SILASTIC™ HCR materials can help you address these challenges with a wide range of targeted materials to help to drive next-generation electric vehicle design.



### Range of high-performance silicone materials

Silicone elastomers are versatile materials that utilize a variety of fabrication processes for many applications within an electric vehicle. These materials can be formulated to address specific performance and/or process requirements. With excellent dielectric properties coupled with resistance to extreme heat, cold, and aggressive fluids, SILASTIC<sup>TM</sup> HCR has shown to be an effective design option in a wide range of electric vehicle powertrain applications.

| Application                   | Design need / HCR solution                                                                                                                                                                                            |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High-voltage<br>EV conductors | <ul> <li>High-temperature resistance</li> <li>Excellent electrical properties</li> <li>Excellent mechanical properties (i.e. tear resistance)</li> <li>Multiple cure systems to meet fabrication processes</li> </ul> |
| Battery seals                 | <ul><li>Robust mechanical properties</li><li>Minimal compression set</li><li>Good thermal and flame resistance</li></ul>                                                                                              |
| Hoses                         | <ul><li>Withstand wide range of service conditions</li><li>High mechanical strength</li><li>Options for co-extrusion and calendering</li></ul>                                                                        |





### Applications for SILASTIC™ HCR exist throughout the EV battery enclosure

### For example:

**Thermal and seal/valve:** Management and control of gases inside the battery enclosure; up to and including flame and gases from a thermal event.

**Thermal barrier:** Offers robust, flexible barriers between various critical battery components, (eg. between battery cells, near connectors).

**Busbar coating:** Insulation of high-voltage conductors, reduces arcing; offers electrical insulation before, during, and after a thermal event.

**Hose protection:** Offers robust, flexible protection around cooling lines within the battery enclosure; provides thermal insulation before, during, and after a thermal event.

**Connection cover:** Insulation of high-voltage components; can offer flame barrier and/or electrical insulation before, during, and after a thermal event.

### **HCR for EV Battery fire protection**

| Product                                            | Application                   | Need                  | Spec gravity<br>ASTM D792 | Durometer<br>[Shore A]<br>ASTM D2240 | Tensile strength<br>[MPa]<br>ASTM D412 | Elongation [%]<br>ASTM D412 |
|----------------------------------------------------|-------------------------------|-----------------------|---------------------------|--------------------------------------|----------------------------------------|-----------------------------|
| SILASTIC™ HCM 50-1339<br>FR Silicone Rubber RED    | Thermal and seal/valve        | Flame<br>resistant*** | 1.2                       | 49                                   | 7.7                                    | 439                         |
| SILASTIC™ HCM 60-1359 EV FR<br>Silicone Rubber RED | Thermal valve/thermal barrier | Flame<br>resistant*** | 1.4                       | 63                                   | 6.2                                    | 222                         |
| SILASTIC™ HCC 67-1347<br>FR Silicone Rubber RED    | Thermal barrier               | Flame<br>resistant*** | 1.3                       | 67                                   | 10.6                                   | 511                         |
| SILASTIC™ HCx 67-1352<br>EV FR Silicone Rubber ORG | Busbar coating                | Ceramifying           | 1.4                       | 71*/68**                             | 7.7                                    | 455*/493**                  |
| SILASTIC™ HCE 60-1335<br>FR Silicone Rubber RED    | Hose protection               | Ceramifying           | 1.3                       | 59                                   | 8.5                                    | 484                         |
| SILASTIC™ HCC 67-1347<br>FR Silicone Rubber RED    | Connection caves              | Flame<br>resistant*** | 1.3                       | 67                                   | 10.6                                   | 511                         |
| SILASTIC™ HCC 65-1351<br>EV FR Silicone Rubber RED | Connection cover              | Ceramifying           | 1.7                       | 65                                   | 2.7                                    | 235                         |

ASTM: American Society for Testing Materials

These are typical properties, not to be construed as specifications.



UL 94 flame bars, showing vertical burn orientation.



High-temperature torch exposure performed on HCR coated busbar test part.

### FLAME RESISTANT HIGH CONSISTENCY RUBBERS

SILASTIC™ HCR materials offer a barrier to flame and hot gases during a thermal event:

- Maintain electrical and physical properties across wide temperature range and exposure durations, and thermal events
- Preferred fabrication methods include molding, extrusion, calender + die cut

### **CERAMIFYING HIGH CONSISTENCY RUBBERS**

SILASTIC™ HCR materials offer a barrier to flame and ceramify during thermal event:

- Robust dielectric strength before and after ceramification
- Maintain physical properties across wide temperature range and exposure durations
- Preferred fabrication methods include molding, extrusion, calender + die cut



<sup>\*</sup> Molding \*\* Extrusion \*\*\*All FR materials designed to meet UL94V0 requirements

# Silicone elastomers for electrical cable connectors seals.



Electrical connectors are critical for maintaining connectivity and power throughout the vehicle. Connector seals offer electrical and environmental insulation at these junctions throughout the powertrain and auxiliary locations.

High consistency rubber (HCR) and liquid silicone rubbers (LSRs) from Dow offer excellent sealing performance in electrical connectors for automotive applications. These distinct materials offer consistent sealing performance at high and low temperature conditions, with low compression set, a wide range for hardness and modulus, and options to offer self-lubrication to ease the assembling process. In addition, they can be specially formulated to meet the emerging demand for enhanced thermal resistance, and compatibility with corrosive flame retardants.

### High consistency rubber for electrical connector seals

- · 1-part, fully formulated, ready to use
- · Low modulus material suitable for direct wire insertion
- · Compression and injection moldable
- · Custom colors available

| Product                                  | Oil<br>level | Recommended<br>seal type | Special<br>attributes | Shore A hardness<br>ASTM D2240 | Tensile strength<br>(MPa) ASTM D412 | Elongation (%)<br>ASTM D412 | Tear strength (kN/m)<br>ASTM D792 DIE C |
|------------------------------------------|--------------|--------------------------|-----------------------|--------------------------------|-------------------------------------|-----------------------------|-----------------------------------------|
| XIAMETER™ 23077-V Silicone Rubber        | Low          | Perimeter seal           | Peroxide cure         | 37                             | 5.5                                 | 758                         | -                                       |
| XIAMETER™ 23084-V Silicone Rubber        | Medium       | Perimeter seal           | Peroxide cure         | 26                             | 5.8                                 | 717                         | 18                                      |
| XIAMETER™ 23023-V Silicone Rubber        | High         | Perimeter seal           | Peroxide cure         | 28                             | 7.5                                 | 752                         | 19                                      |
| XIAMETER™ 23010-V Silicone Rubber        | Medium       | Mat seal                 | Peroxide cure         | 18                             | 4.4                                 | 868                         | 15                                      |
| XIAMETER™ HCM 18-1303 Silicone Rubber    | Medium       | Mat seal                 | Reduced mold fouling  | 21                             | 3.3                                 | 650                         | 19                                      |
| SILASTIC™ HCM 20-1324-SL Silicone Rubber | Medium       | Mat seal                 | Platinum cure         | 21                             | 3.3                                 | 1021                        | 16*                                     |

ASTM: American Society for Testing Materials.

All specimens cured for 10 minutes at 177°C. Cure conditions denote parameters used to test rubber properties and do not reflect actual cure time in the injection-molding process. \*ASTM D792 Die B

These are typical properties, not to be construed as specifications.

### **HCR Compounds**

SILASTIC™ HCR compounds can be formulated for specific performance or processing requirements. These HCRs are fully compounded with ready-to-use, heat-curable blends of HCR bases, fillers, modifiers, catalysts, and color pigments.

#### **Custom compounding**

Request a product designed to your specific needs. Visit dow.com/elastomers or simply scan the QR code to be taken directly to the custom compound request page.



With a wide range of attractive features and user benefits, SILASTIC™ HCR compounds are used in a wide range of diverse applications.

### Liquid silicone rubber for electrical connector seals

- · 2 part, 1:1 mix ratio
- · Fast cure profile, no byproducts
- · Liquid injection moldable
- · Third stream pigmentable
- · Compatible with standard primer technologies
- Special grades for adhesion, high temperature resistance, and compatibility with flame retardants available

| Product                   | Oil<br>level | Special attributes                                                         | Shore A<br>hardness<br>ASTM D2240 | Tensile<br>strength<br>(MPa) ASTM<br>D412 | Elongation<br>(%)<br>ASTM D412 | Tear<br>strength<br>(kN/m)<br>ASTM D792<br>DIE C | Compres-<br>sion set (%)<br>ASTM D395 <sup>2</sup> |
|---------------------------|--------------|----------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------|
| SILASTIC™ RBL-9200-20 LSR | None         |                                                                            | 37                                | 5.5                                       | 758                            | 21                                               | 59/18³                                             |
| SILASTIC™ RBL-9200-30 LSR | None         | <ul> <li>Low viscosity</li> </ul>                                          | 26                                | 5.8                                       | 717                            | 17                                               | 53/17 <sup>3</sup>                                 |
| SILASTIC™ RBL-9200-40 LSR | None         | <ul> <li>Excellent flow behavior</li> </ul>                                | 28                                | 7.5                                       | 752                            | 40                                               | 56/14 <sup>3</sup>                                 |
| SILASTIC™ RBL-9200-50 LSR | None         |                                                                            | 18                                | 4.4                                       | 868                            | 42                                               | 55/15 <sup>3</sup>                                 |
| XIAMETER™ RBL-2004-20 LSR | None         |                                                                            | 20                                | 6.5                                       | 900                            | 24                                               | 24                                                 |
| XIAMETER™ RBL-2004-30 LSR | None         | Good NPC properties                                                        | 30                                | 8.3                                       | 650                            | 16                                               | 21                                                 |
| XIAMETER™ RBL-2004-40 LSR | None         | <ul><li> High hot tear strength</li><li> UL recognized component</li></ul> | 40                                | 9.5                                       | 740                            | 35                                               | 16                                                 |
| XIAMETER™ RBL-2004-50 LSR | None         |                                                                            | 50                                | 10.0                                      | 680                            | 43                                               | 19                                                 |
| SILASTIC™ LTC 9400-40 LSR | None         | <ul> <li>Low viscosity</li> </ul>                                          | 40                                | 9.7                                       | 510                            | 30                                               | None                                               |
| SILASTIC™ LTC 9400-50 LSR | None         | Low temperature cure                                                       | 50                                | 8.9                                       | 450                            | 40                                               | None                                               |
| SILASTIC™ LTC 9402-50 LSR | 2%           | Deep section cure                                                          | 30                                | 6.7                                       | 620                            | 40                                               | 21                                                 |
| SILASTIC™ LC30-9001 LSR¹  | 2%           |                                                                            | 28                                | 7.7                                       | 757                            | 31                                               | None                                               |
| SILASTIC™ 9205-30 LSR     | 5%           | • Low viscosity                                                            | 30                                | 6.7                                       | 620                            | 23                                               | 15 <sup>4</sup>                                    |
| SILASTIC™ LC40-9422 LSR¹  | 2%           | <ul> <li>Good NPC properties</li> </ul>                                    | 38                                | 10.1                                      | 781                            | 31                                               | 26                                                 |
| SILASTIC™ 9202-50 LSR     | 2%           |                                                                            | 50                                | 6.7                                       | 390                            | 44                                               | 244                                                |
| SILASTIC™ 9212-50 LSR     | 2%           | Compatible with FR Plastic                                                 | 53                                | 8.6                                       | 512                            | 43                                               | 214                                                |
| SILASTIC™ SA 9940-30 LSR  | None         |                                                                            | 30                                | 6.6                                       | 635                            | 34                                               | 48                                                 |
| SILASTIC™ SA 9940-40 LSR  | None         | • Low viscosity                                                            | 40                                | 6.2                                       | 570                            | 30                                               | 49                                                 |
| SILASTIC™ SA 9940-50 LSR  | None         | <ul> <li>Instant unprimed adhesion<br/>to PA and PBT</li> </ul>            | 50                                | 7.4                                       | 500                            | 44                                               | 49                                                 |
| SILASTIC™ SA 9942-30 LSR  | 2%           | Suitable for two-shot or insert molding                                    | 30                                | 6.2                                       | 670                            | 32                                               | 48                                                 |
| SILASTIC™ SA 9942-40 LSR  | 2%           | • 12 months shelf life                                                     | 40                                | 6.4                                       | 570                            | 30                                               | 53                                                 |
| SILASTIC™ SA 9942-50 LSR  | 2%           |                                                                            | 50                                | 7.0                                       | 490                            | 39                                               | 49                                                 |

ASTM: American Society for Testing Materials.

Cure conditions denote parameters used to test rubber properties and do not reflect actual cure time in the injection-molding process.

All properties except for compression set are generated by curing the materials at 10 minutes at 120°C except otherwise specified.

These are typical properties, not to be construed as specifications.



<sup>(1) 5</sup> minutes at 150°C

<sup>(2)</sup> In accordance to ASTM D395, Method B, type 2, 22 hours at 175°C. Specimens cured at 10 minutes at 175°C unless otherwise specified.

<sup>(3) 10</sup> minutes at 175°C + 4 hours at 200°C.

<sup>(4) 15</sup> minutes at 175°C.

### SILASTIC™ LSRs for fuel cell sealing applications.



The landscape of Proton Exchange Membrane (PEM) fuel cell technology has taken shape in parallel to the growth of electric vehicles. As fabrication methods and operating environments become better defined, Dow silicone elastomer materials have been formulated to address the performance, processing, and productivity demands to realize the broad implementation of fuel cell vehicles.

Silicone elastomers are suitable materials for sealing of PEM fuel cell stack, primary fuel cell housing, and its auxiliary units. The exceptional sealing force retention properties of silicone elastomers in the PEM operating environments support long-term performance of the unit. The wide range of properties and processing parameters of SILASTIC<sup>TM</sup> LSR and FLSR products support the freedom to select the best combination of material and fabrication methods for the specific fuel cell design.

### Benefits of using silicone elastomers in fuel cell sealing

### **Properties**

- Long-term compressive stability supports demanding static sealing applications
- Stable against standard coolant fluids and can be modified to withstand harsher chemical environments
- Thermally stable to maintain robust performance during unit start-up and operation (-70°C to 200°C)

#### **Processes**

- Wide range of cure and rheology profiles offer freedom to leverage a variety of fabrication methods
- Formulated to achieve unprimed adhesion on a variety of materials including metals and low surface energy thermoplastics
- Compatible with standard surface treatment and primer technologies to improve adhesion

| Product                       | Recommended fabrication method     | Special attributes                                                                        | Cure<br>condition <sup>1</sup> | Shore A<br>hardness<br>ASTM D2240 | Tensile<br>strength<br>(MPa)<br>ASTM D412 | Elongation<br>(%) ASTM<br>D412 | Tear strength<br>(kN/m)<br>ASTM D792<br>DIE B |
|-------------------------------|------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|-------------------------------------------|--------------------------------|-----------------------------------------------|
| SILASTIC™ RBL-9694-30P<br>LSR | Robotic dispensing                 | Adhesion to metals and polyamide                                                          | 1                              | 32                                | 7.2                                       | 820                            | 14                                            |
| SILASTIC™ RBL-9694-45M<br>LSR | Robotic dispensing                 | Adhesion to metals and polyamide                                                          | 1                              | 45                                | 7.3                                       | 600                            | 45                                            |
| SILASTIC™ 4-2010 LSR          | Screen printing, injection molding | Adhesion to standard stack plate materials                                                | 2                              | 53                                | 5.3                                       | 249                            | 57*                                           |
| SILASTIC™ SA 9940-50<br>LSR   | Injection molding                  | Adhesion to PA and PBT                                                                    | 3                              | 50                                | 7.4                                       | 500                            | 44                                            |
| SILASTIC™ LTC 9400-50<br>LSR  | Injection molding                  | Low temperature cure for thermally sensitive substrates                                   | 3                              | 50                                | 8.9                                       | 450                            | 40                                            |
| SILASTIC™ FL 40-9201<br>F-LSR | Injection molding                  | Fluorosilicone highly resistant<br>against acids and hydrocarbon<br>fuels, oils, solvents | 3                              | 40                                | 9.2                                       | 470                            | 16                                            |

ASTM: American Society for Testing Materials.

<sup>1</sup>Cure conditions denote parameters used to test rubber properties and do not reflect actual cure time in the injection-molding process.

These are typical properties, not to be construed as specifications.

<sup>(1) 5</sup> minutes at 150°C, (2) 5 minutes at 175°C, (3) 10 minutes at 120°C, (4) 5 minutes at 176°C

ASTM D792 Die C

# We're driving innovation to support impact protection and occupant safety.

While the trend towards connectivity and electrification of passenger vehicles has improved safety through the development of sophisticated Advanced Driver Assistance Systems (ADAS), passive safety features such as seat belts and airbags continue to be critical elements of an integrated auto safety concept.

Airbag module requirements related to performance, weight, and total cost continue to challenge suppliers to provide innovative options, while offering reliable performance across the range of conditions in which safety components are tested.

Liquid silicone rubber remains a preferred successful option, offering the necessary pressure retention across a wide temperature range, coating adhesion, and low flammability, with ease of application at an acceptable cost in use. Within our SILASTIC™ elastomer portfolio we offer materials engineered for coating cut and sewn (CSS) and one-piece woven (OPW) fabrics as well as a friction-reducing topcoat for coated OPW airbags and a successful silicone elastomer seam sealant for use on CSS airbags.

### SILASTIC™ LSR Coating for airbag

| Typical<br>Application                       | Product                       | Key Features                                                                                                                                                     |  |
|----------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | SILASTIC™ LCF 3600 Coating    | <ul><li> Unprimed adhesion to polyamide and polyester</li><li> Low coefficient of friction</li></ul>                                                             |  |
| Flat fabric<br>airbag coating                | SILASTIC™ LCF 3600 LV LSR     | <ul> <li>Low TVOC</li> <li>Unprimed adhesion to polyamide and polyester</li> <li>Low coefficient of friction</li> <li>Suitable for initial impact OPW</li> </ul> |  |
|                                              | SILASTIC™ LCF 3609 LSR        | <ul><li>Low TVOC</li><li>Good flammability at lower coat weight</li><li>Low folding stiffness</li></ul>                                                          |  |
| Seam sealant<br>for cut-and-<br>sewn airbags | SILASTIC™ SE 6777 LSR         | <ul> <li>Excellent adhesion to silicone-coated fabric</li> <li>Low folding stiffness</li> <li>High elongation</li> <li>Room temperature cure</li> </ul>          |  |
|                                              | SILASTIC™ NS9000 Seam Sealant | <ul> <li>Excellent adhesion to silicone-coated fabric</li> <li>Heat curable sealant</li> <li>Low folding stiffness</li> </ul>                                    |  |
| OPW airbag<br>coating                        | SILASTIC™ LCF 3760 LSR        | <ul><li>Very High Elongation</li><li>Unprimed adhesion to polyamide and polyester</li><li>Low coat weights</li></ul>                                             |  |
| OPW top coat                                 | SILASTIC™ LCF 3715 Topcoat    | Reduces coefficient of friction on coated fabric                                                                                                                 |  |



### **LuxSense™ Silicone Synthetic Leather Material.**

LuxSense<sup>™</sup> is the world's **first silicone-based luxury synthetic material** that is addressing transportation seats and interiors specifications, as well as the needs in furniture, fashion, smart wearable devices, and consumer electronics with exceptional features like **soft touch feeling** and **no odor**.

### **Applications:**

- · Dashboards and seats
- Trim and door panels
- Other interior surfaces

### Suitable for:

- Automotive
- Marine
- Aviation

### Features:

- · Hand feeling
- UV resistance
- · Anti-soiling
- · Low stiffness
- · Anti-abrasion
- Low VOC

### **Key benefits:**

### Sense of sight

- Easy to clean and abrasion resistant
- Excellent weatherability and long-lasting performance
- Ability to achieve a broad color palette and high flexibility for more complex geometries

### Sense of smell

- Odorless and low VOC, meeting auto regulation
- Inherently flame resistant
- Liquid silicone rubber technology, avoiding DMF and plasticizer usage

### Sense of touch

- · Soft touch and skin-friendly
- Non-tacky
- · Customizable surface texture, can be perforated


### Sense of sustainability

- · Lower carbon footprint vs. natural leather
- · Support user sustainability initiatives
- Safer materials no plasticizers; DMF-free fabrication process

# Offering innovative automotive lighting design, enhancing driver safety.

As the pioneers of moldable optical silicones, Dow scientists have been engineering materials to support and enhance some of the most complex automotive lighting designs available, such as Adaptive Drive Beam (ADB) systems.

SILASTIC™ Moldable Optical Silicones are award-winning materials well suited for electric vehicle lighting. They can help increase LED efficiency and allow for more design flexibility (form factor, undercuts, optical features). Moreover, they are easy to process and are durable against environmental and thermal factors; and are lightweight compared to traditional glass or plastic. SILASTIC™ Moldable Optical Silicones can create complex lightguides and lenses for various automotive lighting needs and are an excellent choice for electric vehicles requiring enhanced safety and weight reduction.



### Optical materials for adaptive drive beam lighting system

| Product                               | Features                              | Durometer<br>[Shore A]<br>ASTM D2240 | Tensile<br>strength<br>[12.0 MPa]<br>ASTM D412 | Elongation<br>[%]<br>ASTM D412 | Luminous<br>transmittance<br>[%]<br>at 10 mm* |
|---------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------------------|
| SILASTIC™ MS-1001 Moldable Silicone** | Controlled volatility                 | 87                                   | 12                                             | 50                             | 92                                            |
| SILASTIC™ MS-1002 Moldable Silicone** | Industry leading for complex geometry | 72                                   | 11.2                                           | 80                             | 90                                            |
| SILASTIC™ MS-1003 Moldable Silicone   | Higher elongation and flexibility     | 51                                   | 5.5                                            | 325                            | 92                                            |

These are typical properties, not to be construed as specifications.



For more information on this award please visit https://edisonawards.com/past-winners/



For more information on this award please visit https://edisonawards.com/2023-winners/

<sup>\*</sup>Weighted total transmittance between 360 and 780 nm according to CIE Colorimetry 15:2004

<sup>\*\*</sup>AMECA certified



# The world's first silicone self-sealing tire, designed for recycling

Electric vehicles are heavier weight thanks to the batteries inside, and designers are challenged with lightweighting and safety innovations in materials selections. Dow's award winning, recyclable SILASTIC™ Self Sealing Silicone removes the need for a spare tire, reducing overall vehicle weight, improving range and fuel efficiency, offering more design freedom.

An exceptional option at all stages — from process, use, and end of life — while addressing OEM performance requirements, Dow's ambient curing silicone elastomer forms a self-sealing layer on the inner surface of a tire, offering excellent sealing performance following puncture, allowing long distance driving without loss of tire pressure, keeping you safely on the road to your destination.

This distinct silicone elastomer can be applied in a fast mass-producible process, and effectively separated from the tire at end of life supporting efficient recycling, leading the industry's transition to a more sustainable future.

### Innovative, self-sealing silicone designed to be recyclable

| Product                                  | Durometer [Shore OOO]<br>ASTM D2240 | Elongation [%]<br>ASTM C1135 |
|------------------------------------------|-------------------------------------|------------------------------|
| SILASTIC™ SST-2650 Self-Sealing Silicone | 29                                  | 740                          |

Typical values, not to be construed as specifications. Users should confirm results by their own tests



For more information on this award please visit https://edisonawards. com/2023-winners/



For more information on this award please visit https://sealawards. com/sustainabilityaward-2024/

| Performance           | Spare | Run flat | Butyl | SILASTIC™<br>SST-2650 Silicone |
|-----------------------|-------|----------|-------|--------------------------------|
| Light weight          |       |          |       |                                |
| Space saving          |       |          |       |                                |
| Larger tires (EV/SUV) | •     |          | •     |                                |
| Miles after puncture  |       |          |       |                                |
| Low temperature       |       |          |       |                                |
| Processability        |       |          |       |                                |
| Recyclability         |       |          |       |                                |



At Dow, we prioritize sustainability in everything we do, and we have decades of success implementing silicone products that are effective and designed for sustainability.

Globally integrated, we're engineering innovative silicone elastomer materials that enhance the rapidly changing mobility landscape, and support significant growth in the electric vehicle industry.



### How can we help with your latest innovations?

Learn more at dow.com/elastomers

## **MobilityScience**™

Images: 73312867326, 71782874778, 71782874778, 40963379799, 57973063477, 2132380695, 59529443957, 2115547856, 41004785423, 69770603288, 69770600307, 1905315159, 76561236283, 41971138918, 72144894124

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

®™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

 $\ensuremath{\text{@}}$  2025 The Dow Chemical Company. All rights reserved.

2000024825-162650 Form No. 80-8635-01-0625 S2D