

DOWSIL™ THERMAL GAP FILLERS FOR BATTERY APPLICATIONS

PRESENTED BY ERICA EVERETT & KEN WEIDNER

THE BATTERY Show Webinar Series
September 2020

PRESENTERS

ERICA EVERETT

MARKETING MANAGER, TRANSPORTATION & E-MOBILITY

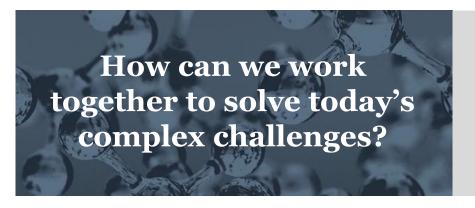
Erica has been with Dow for ten years, and is responsible for driving the business strategy and growth for silicones and hybrid technologies for electric vehicles and transportation electronics. Erica holds a bachelor's degree in Marketing and Business Management from Northwood University, and MBA from Wayne State University.

EJEverett@dow.com

Ken Weidner Technical Service & Development Scientist, Transportation & E-Mobility

Ken is a technical service and development scientist supporting the adoption and use of silicone materials into automotive electronics. Ken has been involved with the development of materials for electronic applications for over 30 years, with an emphasis on protection and interconnectivity. Ken holds a Bachelor and Masters of Science in Electrical Engineering from Auburn University.

Ken.Weidner@dow.com



AGENDA

- ✓ MobilityScience™ introduction
- ☐ Introduction to portfolio of thermally conductive silicones
- □ New DOWSIL™ TC-5515LT Low Density Thermal Conductive Gap Filler
- ☐ Question & Answer Session

This Is Dow

It starts with passion and purpose. At Dow, our people use science and collaboration to create what matters most to our customers, society and the planet. Our ambition to be the world's most innovative, customer-centric, inclusive and sustainable materials science company drives best-inclass performance and a culture where new ideas thrive.

2019 NET SALES

\$43B

EMPLOYEES

~36,500

MANUFACTURING SITES

109 sites

GLOBAL REACH

31 countries

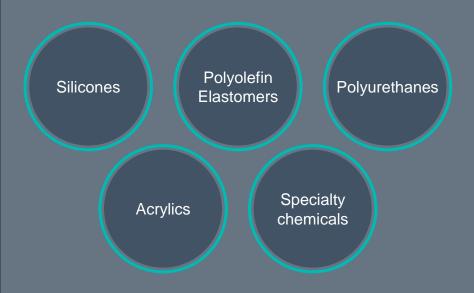
in which Dow manufactures products

MobilityScience[™]

How we're driving change in the transportation industry together

Definitions

Mobility



Power

Utilization

Control

Science

How can we collaborate?

One Dow

Cross-business team providing easy access to the breadth and depth of Dow

Leading technology

World leading integrated material science portfolio

Customized development

Mobility specific innovation

Global reach

Reliable global supplier at scale

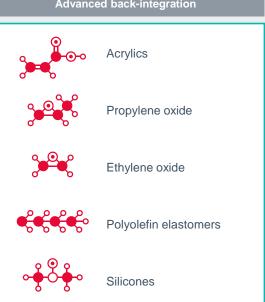
Expertise & support

Decades of industry experience and expertise

Sustainability

Holistic approach to material and vehicle life cycle

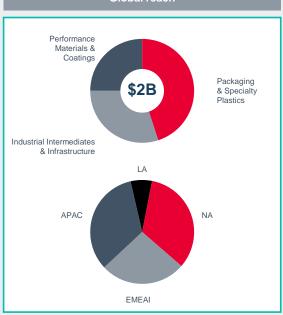
What trends can we explore as partners?



Our global transportation capability

Building blocks

Advanced back-integration


Capabilities

World-class science and engineering capabilities

Scale

Global reach

BATTERY PACK ASSEMBLY

CLICK HOT SPOTS FOR DETAILS

Carbon or glass fiber reinforced polymer housing (CFRP or GFRP)

Lightweight, durable, fast-processing composite replaces conventional aluminium battery case.

Encapsulants

Lightweight cable protection, dielectric encapsulation, and vibration absorption.

Dispersant & rheology modifier For electrode material synthesis or ceramic coating on separator.

Thermally conductive gap filler

Polyurethane- or silicone-based filler replaces traditional thermal pad for effective heat dissipation.

Thermally conductive adhesives

Polyurethane- or silicone-based adhesives form excellent bonds with traditional aluminium (PU) or CFRP composite (Si) battery housings.

Thermal insulation foam

Polyurethane- or silicone-based foam for good, lightweight insulation performance; reduced internal/external temperature differential; good flame retardant properties.

Conformal coating

Thin polyurethane- or siliconebased film/membrane offers protection against moisture, dust, static, etc.

Silicone

Polyurethane

EPDM

Acrylate/PEG

Polymer composite

Foam gasket

Efficient sealing/EMI shielding with formed-in-place, cured-in-place, or dispensed foam gaskets.

Coolant fluid

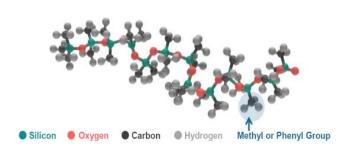
Acrylate/polyethylene glycol (PEG) coolant for improved heat dissipation.

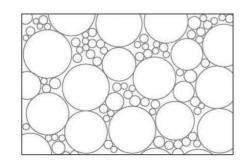
Cell cushion gasket

EPDM material offers space release and vibration dampening between cells.

AGENDA

- MobilityScience[™] introduction
- ✓ Introduction to portfolio of thermally conductive silicones
- □ New DOWSIL™ TC-5515LT Low Density Thermal Conductive Gap Filler
- ☐ Question & Answer Session

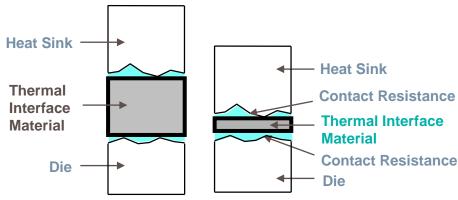

WHY SILICONES FOR THERMALLY CONDUCTIVE APPLICATIONS?


Typical features

- Low variability of properties with temperature and time
- Various curing chemistries available such as fast room-temperature reaction for easier part handling
- Excellent surface wetting ability
- Very high material purity

Silicone compounds loaded with thermally conductive fillers

- Remain flexible even at very high filler content (> 80 vol.%)
- If desired, the material can still be made flowable
- Generally non-flammable (UL94 V-0)



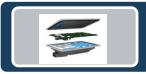
Multimodal particle size distribution to achieve very high loading

WHY SILICONES FOR THERMALLY CONDUCTIVE APPLICATIONS?

- High thermal conductivity at lower viscosity
- > Retains flowable viscosity at high filler content
- Low energy surface
- Good wetting to minimize contact resistance
- Electrical insulation
- Chemical stability
- Hydrophobicity

Thick bondline: bulk properties are dominant

Thin bondline:
wet ability and contact
resistance are dominant


RANGE OF THERMALLY CONDUCTIVE MATERIALS

Adhesives

- Silicone adhesive with thermal conductivity
- Improved stability over time

- Can replace mechanical fixation
- Insulator or electrically conductive

Gap Fillers

- Soft and compressible/stress relieving
- Ideal for applications with large gap tolerances

- Non-flowable
- · Limited adhesion

Thermal Gels

- Alternative to thermal pads (performance/cost)
- Soft and compressible/stress relieving

- Flowable
- Limited adhesion

Thermal Compounds

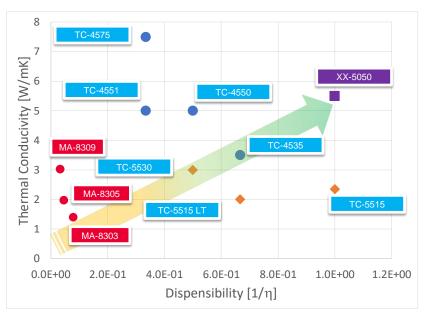
- Non-curing paste
- Low thermal resistance capabilities

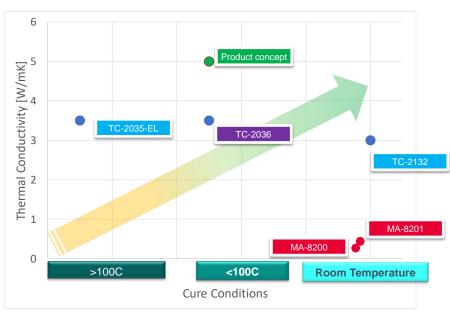
- Limited stability
- Need mechanical fixation

Encapsulants

- Protection and heat dissipation
- Flowable

- Low modulus/stress relieving
- With or without adhesion


COMMERCIAL PORTFOLIO OF THERMAL SILICONES AT DOW - SUMMARY

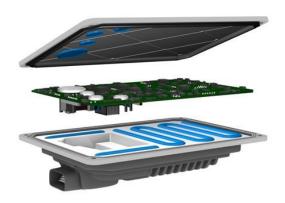

	Adhesives	Gap Fillers	Thermal Gels	Compounds	Encapsulants
Thermal conductivity	0.8 – 3.3 W/ m.K	1.5 – 5.0 W/m.K	1.5 – 2.5 W/m.K	0.9 – 5.2 W/m.K	0.3 – 2.7 W/m.K
Viscosity	Semi-flowable to non-flowable	Non-flowable	Semi-flowable	Semi-flowable to non-flowable	Flowable
Curing type	Addition / Condensation	Addition	Addition	Non-cure	Addition
Bond line thickness	40 μm – 150 μm	150 μm – 5 mm	150 μm – 5 mm	< 40 µm	from mm to cm
Primerless adhesion	Yes	No	No	No	Possible
Dispensing	Static mixer (2K) Needle (1K)	Static mixer (2K)	Screen printing (2K) Static mixer (2K)	Screen printing (1K) Squeegee (1K) Needle (1K)	Static mixer (2K)

TRENDS WITH THERMAL MATERIALS FOR BETTER EV BATTERY PACKS

Increased filler loading required for higher thermal conductivities

- Product development efforts with highly filled systems to
 - Improve dispensability rate and repeatability
 - Reduce cure temperature requirements

GAP FILLERS

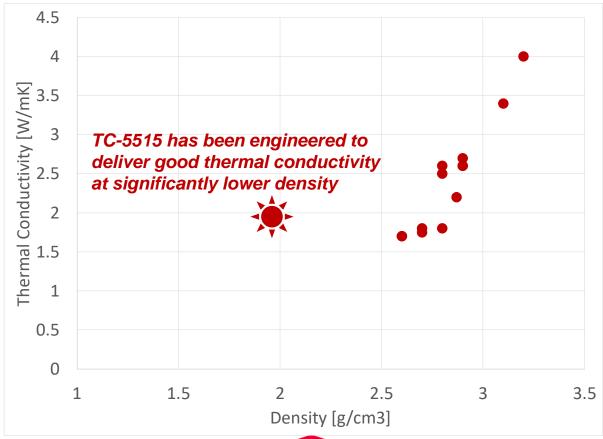

- Soft and compressible to relieve stress
- Ideal for applications with large gap tolerances, typically from 150 µm to 5 mm

Benefits

- Excellent mechanical ageing
- Maintain low stress interfacial contact
- Non-flowable for thicker bondline, highly thixotropic for fast processing
- Fast heat cure or room-temperature cure

Limitations

- Not for thin bondlines
- No chemical bonding, tack adhesion only
- Mixing: 2-part only



AGENDA

- MobilityScience[™] introduction
- ☐ Introduction to portfolio of thermally conductive silicones
- ✓ New DOWSIL™ TC-5515LT Low Density Thermal Conductive Gap Filler
- ☐ Question & Answer Session

TC-5515 LT: ENABLING INNOVATION IN GAP FILLERS AND THERMAL GELS

DOWSILTM THERMAL GAP FILLER FAMILY

Material	Part	Thermal Conductivity* (W/m·K)	Specific Gravity** (cured)
DOWSIL™ TC-4535 CV	2 Part	3.5	3.1
DOWSIL™ TC-4525	2 Part	2.6	2.9
DOWSIL™ TC-5515 LT	2 Part	2.0	1.95

Thermal conductivity*: by hot disk, CTM 1163, ISO 22007-2 Specific gravity**: cured sample, CTM 0022, ASTM D792

- Dow Thermal Gap Filler Definition: A non-slump dispensable and curable system which resulting a soft and thermal conductive material able to dissipate the heat from the heat source to the cold source.
- Typical thickness: above 150μm up to 5mm.

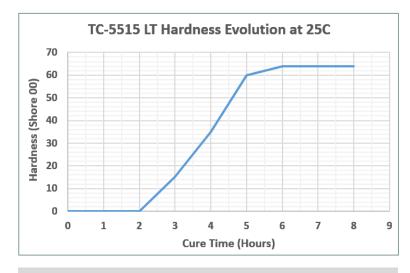
DOWSILTM TC-5515 LT KEY PROPERTIES OUTLOOK

DOWSILTM TC-5515 LT is a 2.0 W/m·K, two parts, RT cure low density thermal conductive gap filler.

Key Property	Test Method*	Result
Mixed Viscosity	CTM 1094, ASTM D4287	140 Pas (10 S ⁻¹)
Specific Gravity (cured)	CTM 0022, ASTM D792	1.95 g/cm ³
Thermal Conductivity (Hot disk)	CTM 1163, ISO 22007-2	2.0 W/m-K
Thermal Conductivity (ASTM D5470)	CTM 0069, ASTM D5470	1.7 W/m·K
Working Time (by viscosity)	CTM 1094, ASTM D4287	90 mins
Cure time	CTM 0099, ASTM D 2240	6 h @25 °C, 30 mins @ 80 °C
Hardness	CTM 0099, ASTM D 2240	Shore 00 65
DMA Shear Modulus**	CTM 1098, ASTM D4065	0.27 MPa
Flame retardant	UL 94 V0	UL 94 V0 at 1mm

^{*}CTM: Corporate Test Method.

DMA Shear Modulus**: 25mm parallel plates with10 N press, 0.05 strain, 1 HZ frequency.


^{*}ASTM: American Society for Testing and Materials.

^{*}ISO: International Organization for Standardization

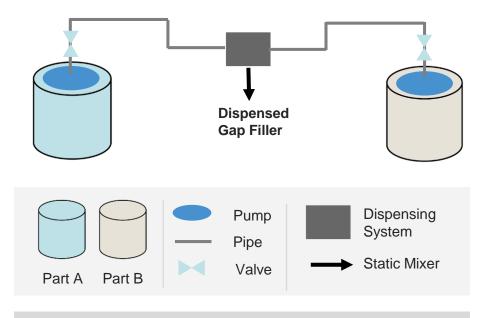
^{*}UL: Underwriters Laboratories

DOWSIL™ TC-5515 LT Curing

- Room temperature fast cure help to save energy and boost production efficiency.
- 5% off-ratio do not have obvious impact hardness, working time and curing time.

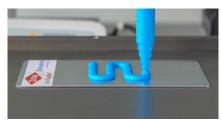
A : B	Hardness (Shore 00)	Working Time (Mins)	Curing Time at 25 °C (mins)
95 : 100	68	95	400
100 : 100	65	90	360
105 : 100	62	85	340

Hardness: CTM 0099, ASTM D2240.


Working time: mixed viscosity double time, CTM 1094, ASTM D2196 Curing time: test method by Hardness CTM 0099, ASTM D2240.

Cure time at 25 °C: 6 hours (by hardness)

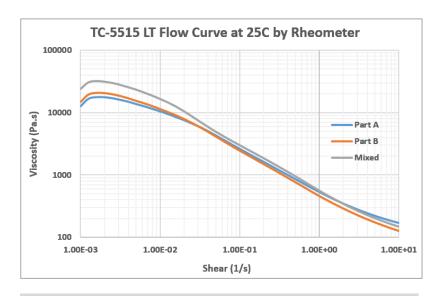
Cure time test method by Hardness: CTM 0099, ASTM D2240.

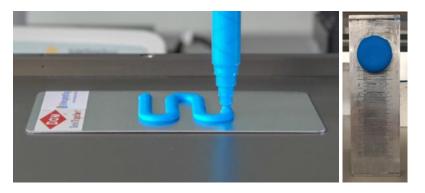


DOWSIL™ TC-5515 LT Dispensing Process

TC-5515 LT have low abrasion (low Mohs hardness filler) to dispensing valve, thus low equipment maintenance cost.

Other dispensing configurations are appropriate. Dow equipment partner and TS&D representatives can help you design the right process for your application.

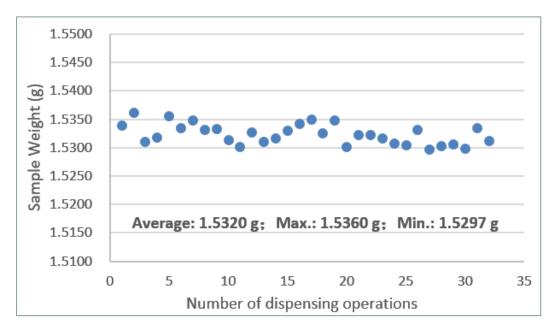



DOWSILTM TC-5515 LT – RHEOLOGY

Thixotropic index (1 s⁻¹/10 s⁻¹): 3.5

Test Method:

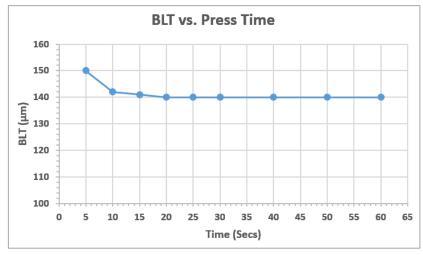
TA ARES G2 Rheometer. 25mm parallel plates, 0.6mm gap. Flow sweep from 0.001s⁻¹ to 10s⁻¹.


Thixotropic nature of the material allows:

- Easily dispense by meter mix system with a high throughput.
- Stay in place (no flow) once dispensed for a good accuracy of the pattern.
- Hold vertical position on the substrates in an uncured form up to completed cure.

DOWSIL™ TC-5515 LT Dispensing Performance

TC-5515 LT is capable of accurate dispensing for automatic production.


Scheugenpflug Piston Dispenser Dos P016 Ø16

- Min. Quantity per Shot: 1.56g (±2.5%)
- Max. Quantity per Shot: 27.44 (±1%)
- Max Metering Rate: 1.2 ml/s
- Mixing tube: Ø12 mm, 19 coils
- Accuracy: ± 0.04g
- Cpk: 2.12 (LSL 1.521, USL 1.638)

DOWSIL™ TC-5515 LT Bond Line Thickness (BLT)

Test Method:

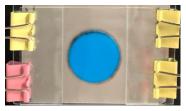
- Texture Analyzer
- Temperature 25 °C
- Holding time: 10 secs

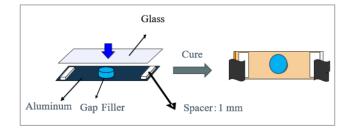
Test Method:

- Texture Analyzer
- Temperature 25 °C
- Pressure: 14 N/ cm²

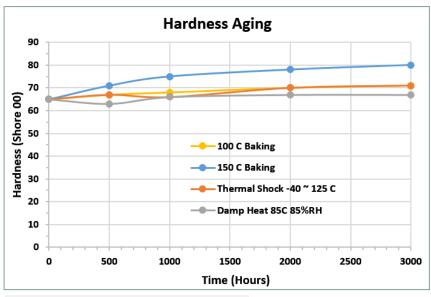
DOWSILTM TC-5515 LT – VERTICAL HOLDING

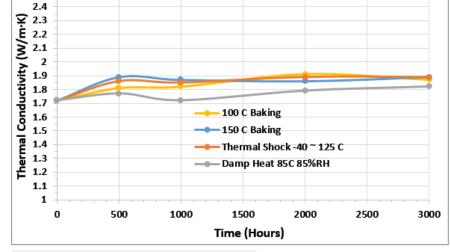
TC-5515 LT hold vertical position during aging on mounted surface.





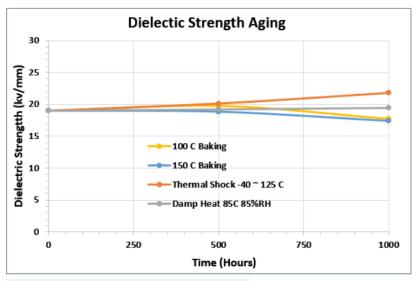
Condition	Observation (3000h)
150 °C baking	No drop
85 °C 85% RH	No drop
-40 ~125 °C thermal shock	No drop


Test Method:

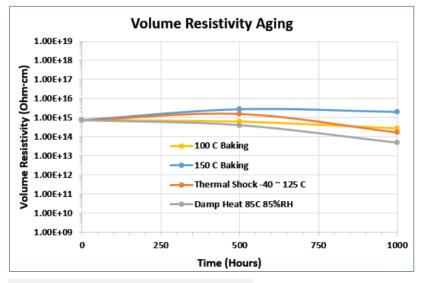

- Gap 1mm between AL and Glass
- 25 °C cure 24h → Vertical aging
- Aging condition: 150 °C baking, 85 °C 85%RH,
 -40°C /30min to 125°C /30min thermal shock.

DOWSILTM TC-5515 LT – AGING PERFORMANCE

Thermal Conductivity (ASTM D5470) Aging

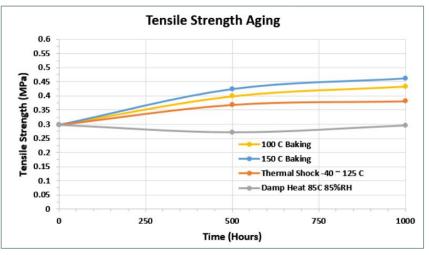

Cured at 25 °C for 24 h. Hardness: CTM 0099, ASTM D2240 Thermal shock: -40 °C /30min to 125 °C /30min

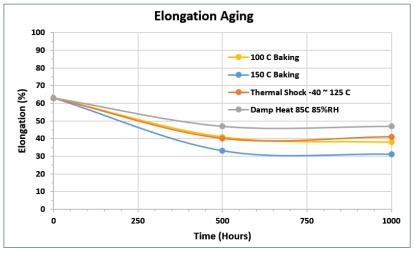
Cured at 25 °C for 24 h.
Thermal Conductivity: CTM 0069, ASTM D5470
Thermal shock: -40 °C /30min to 125 °C /30min



2.5

DOWSILTM TC-5515 LT— ELECTRICAL AGING PERFORMANCE


Cured at 25 °C for 24 h. Dielectric Strength: CTM 0114, ASTM D149 Thermal shock: -40 °C /30min to 125 °C /30min



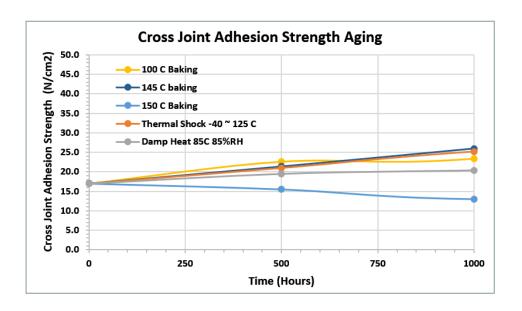
Cured at 25 °C for 24 h. Volume Resistivity: CTM 0249, ASTM D257 Thermal shock: -40 °C /30min to 125 °C /30min

DOWSILTM TC-5515 LT— MECHANICAL AGING PERFORMANCE

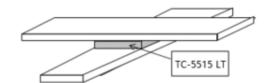
Cured at 25 °C for 24 h.

Tensile Strength: CTM 0137, ASTM D412

Thermal shock: -40 °C /30min to 125 °C /30min

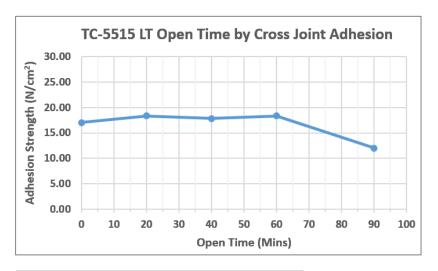

Cured at 25 °C for 24 h.

Elongation: CTM 0137, ASTM D412


Thermal shock: -40 °C /30min to 125 °C /30min

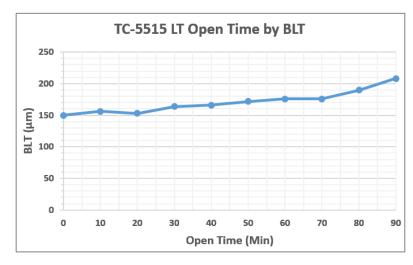
DOWSILTM TC-5515 LT – INTERFACIAL CONTACT AGING PERFORMANCE

Test Method: Cross Joint Adhesion


- Substrate: Al.
- TC-5515 LT thickness: 1.0 mm
- Cure Condition: 25 °C for 24h
- Aging condition: 100/ 145/ 150 °C baking, -40 °C /30min to 125 °C /30min thermal shock, 85 °C 85%RH.

Failure mode: 100% CF for all samples

DOWSILTM TC-5515 LT OPEN TIME FOR ASSEMBLY


Suggest open time within 60 mins to achieve best interface contact strength.

Substrate: Al

Cure Condition: 25 °C for 24h

Test Method: BLT

Texture Analyzer, 5 N/ cm² pressure

Temperature 25 °C

Holding time: 10 secs

DOWSILTM TC-5515 LT SUMMARY

- DOWSIL[™] TC-5515 LT is a two part, 2.0 W/m·K thermal conductive gap filler
- Target application is EV battery pack heat dissipation
- Key benefits are light weight and reliable performance for automotive
- Capable of accurate dispensing for automatic production

Low density gap filler with reliable thermal conductivity and performance for light weight EV battery pack assembly

AGENDA

- MobilityScience[™] introduction
- ☐ Introduction to portfolio of thermally conductive silicones
- □ New DOWSIL™ TC-5515LT Low Density Thermal Conductive Gap Filler
- ✓ Question & Answer Session

LET'S COLLABORATE!

MobilityScience[™]

Partnering with us can give you access to:

- A world-leading R&D organization and deep chemistry toolbox to develop innovative solutions
- Materials that enable cost-effective management of next-generation EV/HEV battery design challenges
- Global reach, with relationships across value chains to provide:
 - Excellent technical expertise
 - A strong regional manufacturing footprint
 - Local support and sourcing

www.dow.com/mobilityscience

ERICA EVERETT MARKETING MANAGER, TRANSPORTATION & E-MOBILITY

EJEVERETT@DOW.COM

KEN WEIDNER

TECHNICAL SERVICE & DEVELOPMENT, TRANSPORTATION & E-MOBILITY

KEN.WEIDNER@DOW.COM

Seek

TogetherTM

THANK YOU

The information contained in this communication does not constitute an offer, does not give rise to binding obligations, and is subject to change without notice to you. The creation of binding obligations will occur only if an agreement is signed by authorized representatives of Dow and your company. Any reference to competitor materials contained in this communication is not an endorsement of those materials by Dow or an endorsement by the competitor of Dow materials.

To the fullest extent permitted by applicable law, Dow disclaims any and all liability with respect to your use or reliance upon the information. DOW DOES NOT MAKE ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, WITH RESPECT TO THE UTILITY OR COMPLETENESS OF THE INFORMATION AND DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow
® 2020 The Dow Chemical Company. All rights reserved.

Form No. 80-8507-01-0920