
# CERTIFICATE

**Certified Passive House Component** Component-ID 1530sp02 valid until 31st December 2025 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany



Category:

Edge-bond for low-E-glazing: Secondary seal

Manufacturer: Dow Silicones Belgium SPRL, Seneffe,

**Belgium** 

Product name: DOWSIL<sup>TM</sup> 3363 Insulating Glass Silicone

Sealant

## This certificate was awarded based on the following criteria:

Depending on the climatic region, the spacer prevents high surface temperatures, which can cause mould. At least 3 out of the 7 reference frames fulfilled the spacer hygiene criteria for the relevant climatic region.

Hygiene

 $f_{Rsi} \ge 0.75$ 

The specific resistance of the spacer's edges is greater than the climate-independent minimum requirement.

Efficiency

 $R_E = 5.40 \text{ m K/W} \ge 3.50 \text{ m K/W}$ 

Type

Silicone

Height of sealing

4/6 mm

Thermal conductivity of sealing

0.350 W/(m K)



silicones by **Dow** 



cold climate





**Passive House** efficiency class

phE

phD

phC

phB

phA

phA+

CERTIFIED COMPONENT

Passive House Institute

#### **Dow Silicones Belgium SPRL**

Parc Industriel Zone C, Rue Jules Bordet, 7180 Seneffe, Belgium

→ +32 64 88 85 93 | ⊠ sebastien.dath@dow.com | → http://www.dow.com |

#### Description

Secundary sealant based on silicone with increased strength for the edge of insulating glass units. Tested thickness of secondary seal: Windows: 4 mm, Curtain walls: 6 mm.

Thermal conductivity: 0.350 W/(m K)

### **Explanation**

Sealants are categorized into different efficiency classes based on the resistance of their edges RE . For the certification of secondary sealants, the PHI-phA-reference spacer with a height of 7 mm and a thermal conductivity of 0.2 W/(mK) is used.

A detailed report with the calculations is available from either the manufacturer or the Passive House Institute.

The Passive House Institute has defined global component requirements for seven climate regions. In principle, components that have been certified for climates with higher requirements can also be used in climates with lower requirements. This may be economically advantageous.

Further information regarding certification is available on www.passivehouse.com and www.passipedia.org.

2/3

| Reference frames calculated with Silicone |                    |                                  |                                  |                    |                          |
|-------------------------------------------|--------------------|----------------------------------|----------------------------------|--------------------|--------------------------|
| Climate                                   | Arctic             | Cool▼                            |                                  | Warm temperate√    | Warm                     |
| Glass                                     | Quadruple          | Triple                           | Triple                           | Triple             | Double                   |
| Glass package                             | 4/12/3/12/3/12/4   | 6/18/2/18/6                      | 6/16/6/16/6                      | 6/16/6/16/6        | 6/16/6                   |
| Glass U-value                             | $0.35  W/(m^2  K)$ | $0.52  \text{W/(m}^2  \text{K)}$ | $0.70  \text{W/(m}^2  \text{K)}$ | $0.70  W/(m^2  K)$ | 1.20 W/(m <sup>2</sup> K |
| Timber-aluminium<br>integral frame        |                    |                                  |                                  |                    |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.48               | 0.62                             | 0.73                             | 0.87               | 1.03                     |
| $V_g$ [W/(m K)]                           | 0.310              | 0.330                            | 0.330                            | 0.032              | 0.038                    |
| f <sub>Rsi</sub> [-]                      | 0.79               | 0.75                             | 0.71                             | 0.70               | 0.60                     |
| Timber-aluminium                          | E 1-               |                                  |                                  |                    |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.54               | 0.57                             | 0.75                             | 0.97               | 1.19                     |
| $\Psi_g$ [W/(mK)]                         | 0.033              | 0.035                            | 0.035                            | 0.035              | 0.041                    |
| f <sub>Rsi</sub> [-]                      | 0.76               | 0.73                             | 0.69                             | 0.66               | 0.54                     |
| Timber                                    |                    | <u> </u>                         |                                  |                    |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.51               | 0.53                             | 0.78                             | 0.86               | 0.99                     |
| $\Psi_g$ [W/(mK)]                         | 0.029              | 0.032                            | 0.033                            | 0.032              | 0.038                    |
| f <sub>Rsi</sub> [-]                      | 0.78               | 0.76                             | 0.73                             | 0.73               | 0.62                     |
| Vinyl                                     |                    |                                  |                                  | V                  |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.70               | 0.75                             | 0.82                             | 1.02               | 1.16                     |
| $\Psi_g$ [W/(mK)]                         | 0.034              | 0.036                            | 0.037                            | 0.038              | 0.042                    |
| f <sub>Rsi</sub> [-]                      | 0.78               | 0.75                             | 0.73                             | 0.69               | 0.61                     |
| Aluminium                                 |                    |                                  |                                  |                    |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.60               | 0.61                             | 0.71                             | 0.73               | 1.17                     |
| $\Psi_g$ [W/(mK)]                         | 0.035              | 0.038                            | 0.040                            | 0.039              | 0.047                    |
| f <sub>Rsi</sub> [-]                      | 0.79               | 0.79                             | 0.76                             | 0.76               | 0.63                     |
| Curtain wall timber                       | C 3                |                                  |                                  |                    | V                        |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.60               | 0.65                             | 0.66                             | 0.71               | 1.11                     |
| $\Psi_g$ [W/(mK)]                         | 0.047              | 0.046                            | 0.048                            | 0.048              | 0.059                    |
| f <sub>Rsi</sub> [-]                      | 0.74               | 0.73                             | 0.70                             | 0.70               | 0.56                     |
| Curtain wall<br>aluminium                 |                    |                                  | 4                                | 43                 |                          |
| $U_f$ [W/(m <sup>2</sup> K)]              | 0.67               | 0.73                             | 0.75                             | 0.79               | 1.33                     |
| $\Psi_g$ [W/(mK)]                         | 0.054              | 0.054                            | 0.057                            | 0.057              | 0.080                    |
| f <sub>Rsi</sub> [-]                      | 0.82               | 0.81                             | 0.79                             | 0.78               | 0.67                     |

Form No. 62-2208-01-0225 DOW