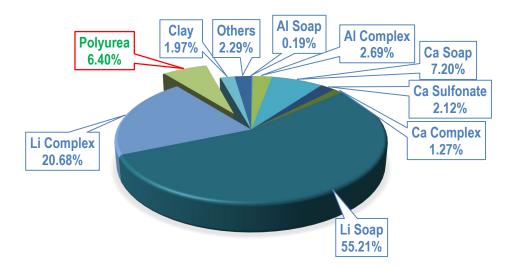


A New Preformed Polyurea Thickener for Grease

Zhe Jia, John Cuthbert, Kevin Capaldo, Bruce Hook, Nathan Wilmot and Andrew Larson


May 23rd, 2019

Seek Together[™]

Grease Market Overview

- Grease = Thickener + Base Stock + Additives
- Total grease production was about 2.57 BM lbs in 2016 (1.4% increase from 2015)
 - Polyurea thickened greases account for approximately 158 MM lbs with a market share of 6%

Polyurea Greases

- <u>Primary Applications</u> for Polyurea Greases: high temperature, anti-oxidative and fill-for-life applications (e.g. CVJ, electric motor bearings, etc.)
 - Market demands high performance grease
 - Less availability and increasing price of LiOH
 - Limited by the toxicity of the raw materials and handling complexity
- Predominant in situ technology (isocyanate + amine reacted in situ in the base stock)

Diisocyanate

Diamine

Monoamine

Polyurea

Polyurea Chemistry Overview

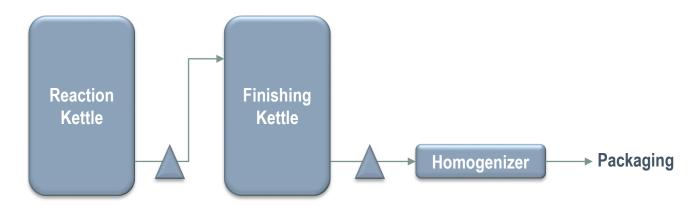
$$(n+1) \quad OCN \underset{NCO}{\overset{}{\stackrel{}}} + \qquad n \quad H_2N \overset{R'}{\overset{}{\stackrel{}}} NH_2 \quad + \qquad 2 \quad R"-NH_2 \qquad \xrightarrow{base \ oil} \qquad R" \underset{N}{\overset{}{\stackrel{}{\stackrel{}}{\stackrel{}}} N} R \underset{N}{\overset{}{\stackrel{}{\stackrel{}}{\stackrel{}}} N} R" \underset{N}{\overset{}{\stackrel{}} N} R"$$

Diisocyanate Diamine Monoamine Polyurea

- Reaction takes place <u>in</u> the base stock
- Isocyanate + (diamine linkage) + alkyl / alicyclic / aromatic amine tail → often are diureas and tetraureas
- Thickener microstructure is very important (H-bonding, dispersibility and mechanical stability, etc.)

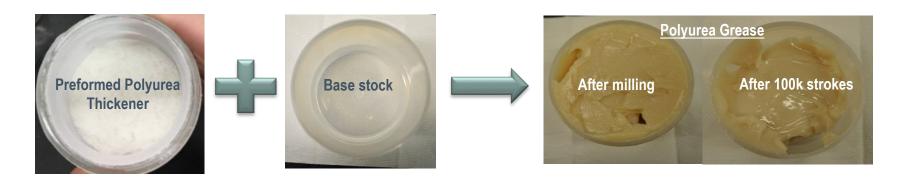
Structure vs. Property

Chemical structure of thickener has a significant impact on grease properties


Structure Selection v.s. Grease Properties						
Amine end group	R ^{NH₂}	NH ₂	NH ₂			
Thickening efficiency	-	+	++			
Thermal stability	-	+	++			
Shear stability	-	+	++			
Pumpability	++	+	-			

- ☐ TDI and MDI are most commonly used isocyanates
- More variations provided by choice of amines
 - Usually a combination of amine/isocyanates used in formulation to achieve structure complexity

In situ Manufacturing Process



- Mixing and dispersion process is important to achieve desired consistency and completion of reaction
- Manufacturing can be difficult due to health hazards of raw materials
- Specially designed facilities are required to effectively handle the reaction of toxic raw materials

Preformed Thickener Technology

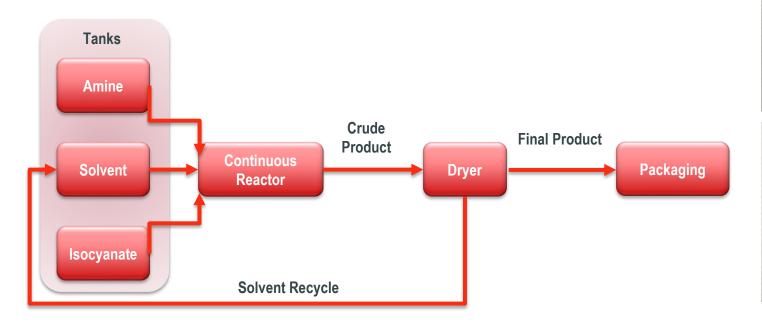
- Less hazardous raw material handling for grease manufacturers
- May not require special equipment to handle toxic raw materials
- Standard Li grease kettle may be used to formulate polyurea grease
- Reduce batch to batch variation from *in situ* production
- > Tailor the thickener structure according to specific needs

This <u>preformed polyurea thickener</u> will provide an alternative for polyurea grease production with competitive lubricating properties, and enhanced safety & handling benefits

Preformed Thickener Structure

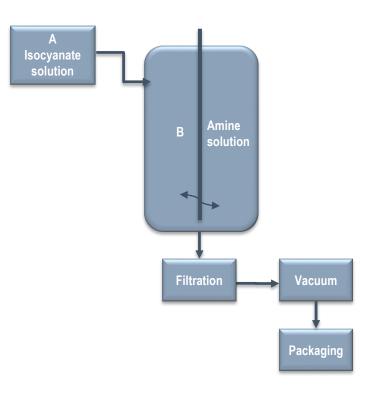
Model compound used for this study

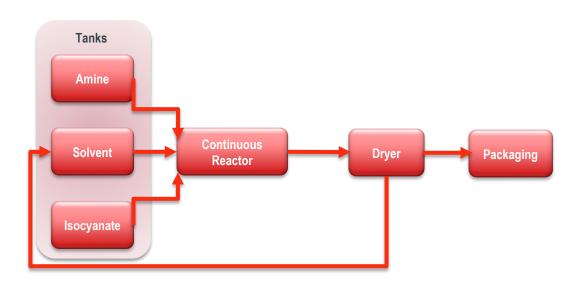
Straightforward chemistry but difficult to operate:


- Hazardous raw materials
- Exothermic urea bond formation generates ~ 40 kcal/mol
- Fast kinetics hard to achieve stoichiometric reaction

R = aliphatic alkyl group Other urea structures were also made

Dow Process Technology*





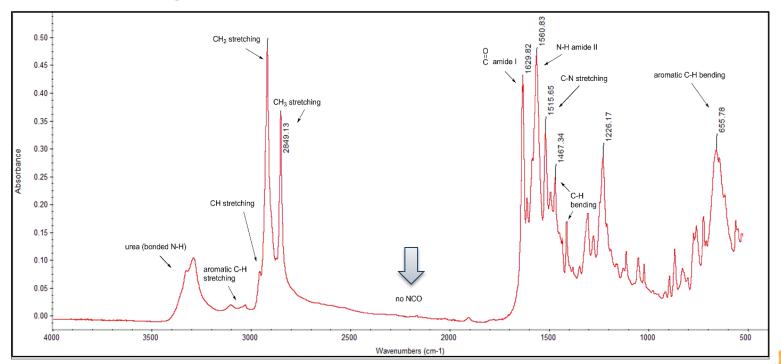
Batch Process v.s. Continuous Process

- ✓ Flexible process to give various thickener structures
- ✓ Highly reliable process
- ✓ Controllable reaction
- ✓ Uniform particle size

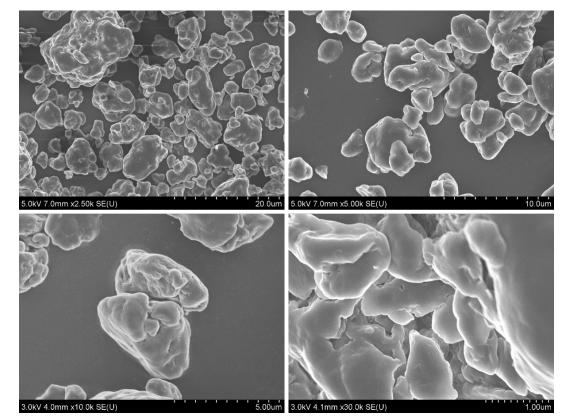
Preformed Polyurea Thickener Overview

Specs	Target	Performance
Unreacted raw materials	<0.1 wt% free isocyanate; <1 wt% free amine	Pass
Residual Solvent	<0.5 wt%	Pass
Particle size distribution	Narrow distribution, agglomerates <500 μm	Pass
Shear stability	NLGI grade 2 with 12.5% thickener loading; Penetration increase <15% after 100k strokes	Exceed - NLGI grade 3 with 12.5% thickener loading; <9% penetration loss after 100k strokes
Dropping point	240 °C	> 260 °C (exceed instrument detection capability)

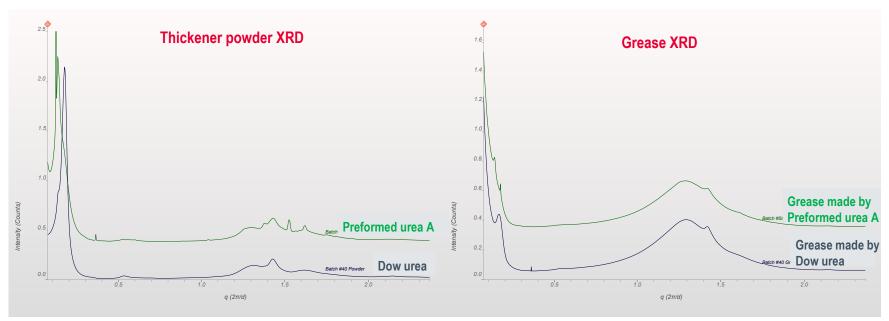
- ✓ Dow proprietary process technology
- ✓ Enhanced thickening efficiency and shear stability v.s. batch process
- ✓ High process flexibility → Enable tuning of thickener structure according to needs



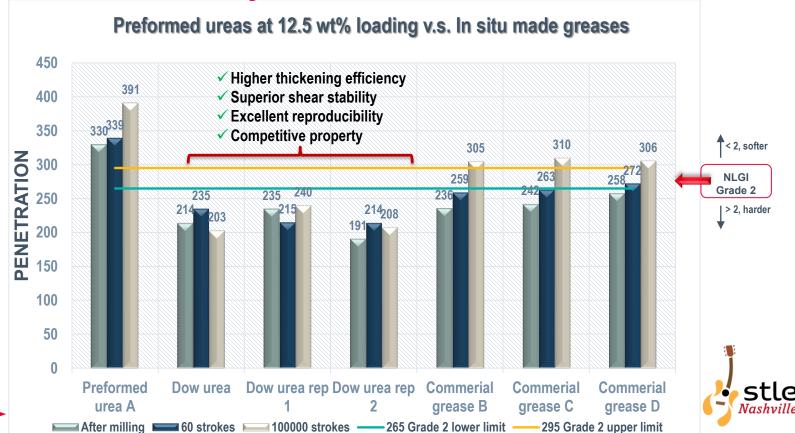
Material Characterization – FTIR


No residual isocyanate

Material Characterization – SEM


Narrow particle size distribution

XRD of Preformed Thickener and Grease



- XRD shows difference in both preformed thickener powder and grease
- Slightly higher average spacing and narrower distribution for the high level structure observed in Dow urea
- Grease made by Dow urea presents slightly higher crystallinity
- Higher level structure gives different spacing in the grease made by Preformed urea A and Dow urea

Grease Shear Stability

Roll Stability Test

	ASTM D1831		ASTM D1831 Modified			
	ASTM D1403 Original Worked Penetration	ASTM D1403 Worked Penetration After Rolling	Δ	ASTM D1403 Original Worked Penetration	ASTM D1403 Worked Penetration After Rolling	Δ
Dow urea *	211	206	-5	211	191	-20
Preformed urea A *	315	355	40	315	374	59
Commercial grease B	268	292	24	268	332	64
Commercial grease C	266	300	34	266	328	62

^{*} Greases made by Dow urea and Preformed urea A are unformulated with 12.5% thickener loading in Group II mineral oil. Made through the same procedure

Thickener Structure Variations

Flexible process can produce customized thickener structures

OCN
$$+ H_2N^R$$
 $+ H_2N^R$

R and R'= aliphatic alkyl, alicyclic, or aromatic group

Flexible Process Enables Tailored Products

to meet registration requirements

Polyurea Thickener	Structure	Inventory
Preformed thickener 1	MDI based diurea, asymmetric	US, Canada, Australia, Taiwan
Preformed thickener 2	MDI based diurea, asymmetric	US, EU, China, South Korea, Philippines, Taiwan
Preformed thickener 3	MDI based diurea, symmetric	US, Canada, South Korea, Taiwan
Preformed thickener 4	MDI based diurea, symmetric	US, EU, China, South Korea, Philippines, Taiwan

Conclusions

This work reports the development of a multi-component polyurea mixture designated for lubricating grease application. It is produced through a novel continuous synthesis of isocyanates and amines, and can be offered as a preformed thickener for the manufacture of polyurea grease.

This novel process presents high flexibility and enables tailored product. NLGI Grade 3 grease can be made with 12.5% thickener loading. The resulted grease also shows enhanced thickening efficiency and shear stability

This preformed polyurea thickener will provide global lubricating grease market an alternative for polyurea grease production with competitive lubricating properties, and enhanced safety & handling benefits

Thank you!

Zhe Jia, Ph.D

Associate Research Scientist
Performance Lubricants R&D
979-238-1419
zjia@dow.com

Seek

TogetherTM