

MATERIAL SCIENCE ANSWERS TO
AIRCRAFT ELECTRIFICATION CHALLENGES

ACKNOWLEDGMENTS

Chris Windiate

Technical Service and Development Engineer

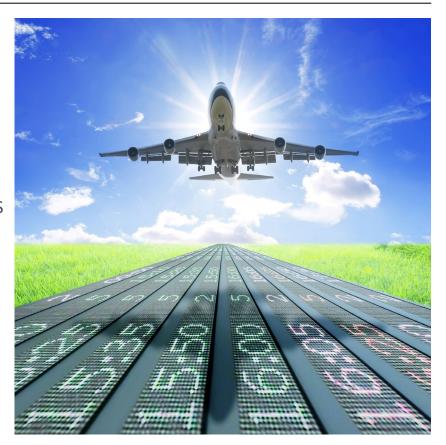
Thierry Cooremans

Technical Service and Development Engineer

Kent Larson

Principal Technical Service and Development Scientist, AETS

Julien Richeton


Technical Service and Development Scientist

Eric Vanlathem

Senior Technical Service and Development Scientist

Joe Sootsman

Ph.D. Development Scientist, Engineered Materials

INVOLVED IN AVIATION SINCE 1943

Dow silicones used for:

Cabins, ground support, engines, airframe, and electronic protection

- Resistance to fuels, water, oils
- Remains flexible from -115°C to 150°C continuous, up to 250°C for short durations
- Injectable, non-curing when needed
- From high flow for fast dispensing to controlled rheology for use on vertical surfaces
- Vibration/shockdampening
- Reduced maintenance cost
- Flame retardant options
- High movement capable

OUR CONTRIBUTION TO THE INDUSTRY

Silicone solutions from Dow

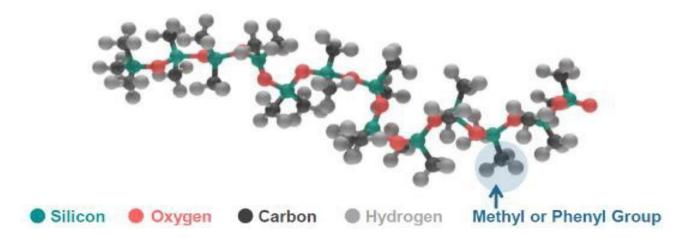
Encapsulants and conformal coatings

Thermally- and electricallyconductive adhesives

Thermally-conductive gap fillers and printable pads

Structural sealing and bonding

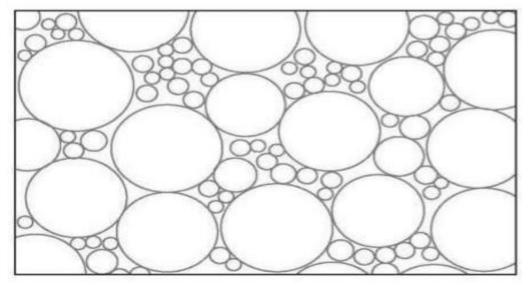
Thermally-conductive encapsulants


Foam gasket material

WHY SILICONES?

Typical features

- Low variability of properties with temperature and time
- Various curing chemistries available such as fast room-temperature reaction for easier part handling
- Excellent surface-wetting ability
- Very high material purity

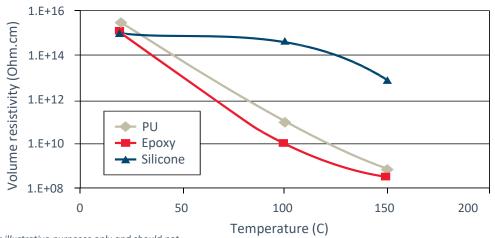


WHY SILICONES?

Silicone compounds loaded with thermally-conductive fillers

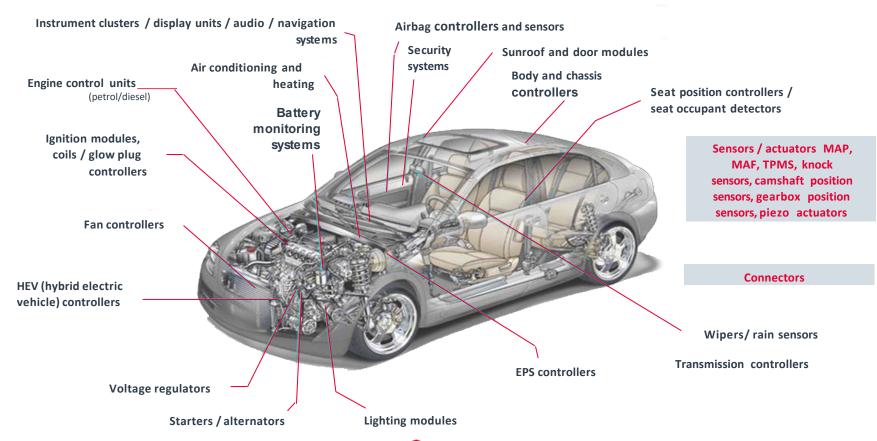
- Typically non-flammable (UL94 V-0)
- Remain flexible even at very high filler content (> 80 vol.%)
- If desired, the material can still be made flowable

Multimodal particle size distribution to achieve very high loading


COMPARISON WITH ORGANIC POLYMERS

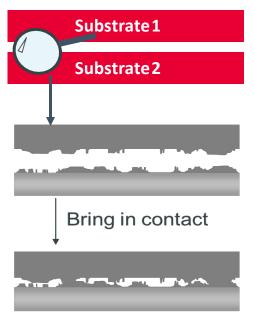
Durability	Contact corrosion	Electrical insulation
Thanks to the Si–O bond, silicones are more stable and more flexible than their organic counterparts • Better flowability during process • Better resistance to processing and operating conditions	 Low risk of contact-corrosion- no water in the material With their hydrophobicity, silicones have low water absorption Silicones also allow entrapped water to escape 	 Idealfor high-voltage insulation Very limited waterabsorption Electrical insulation retains at high temperatures Very low ionic content* * < 1 ppm for some products

COMPARISON WITH ORGANIC POLYMERS

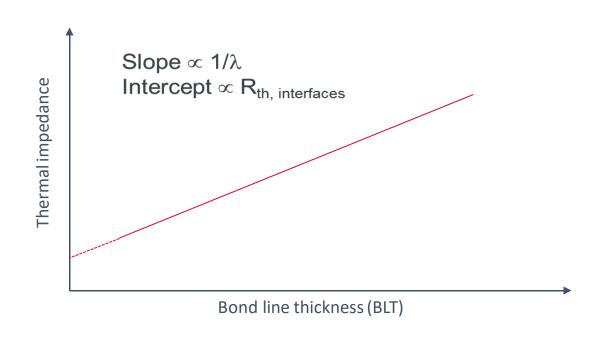

Covalent bonds	Energy [kJ/mol]	Bondlength [Å]	Polymer	Water absorption (24 h)	Moisture vapor transmission
Si - O	445	1.63	Silicone	0.06 %	250 g
C - C	346	1.53	PU	0.09%	12 g
C - O	356	1.42	Ероху	1.20%	7 g

The graphic representations are presented here for illustrative purposes only and should not be construed as product specifications.

LEVERAGING OUR KNOWLEDGE FROM AUTO APPLICATIONS



SILICONES IN BATTERY PACK ASSEMBLY


Cylindrical cells Prismatic or pouch cell **Battery packs Adhesives** for parts assembly Adhesives for parts assembly **Encapsulants** or **gap fillers** for thermal management **Encapsulants** for thermal management Li-ion cells Cooling plate ECU Lithium ion battery Gap fillers for thermal **Encapsulants** or **foams** for fire **Encapsulants** or **gap fillers** for thermal management protection management

THERMAL MANAGEMENT — WHAT MATTERS?

- Device degradation
- Reliabilty issues
- Loss of performances

BATTERY THERMAL MANAGEMENT — ENCAPSULANTS

Battery modules and battery packsare commonly encapsulated with soft, thermally- conductive materials to fill existing voids and optimize heat dissipation.

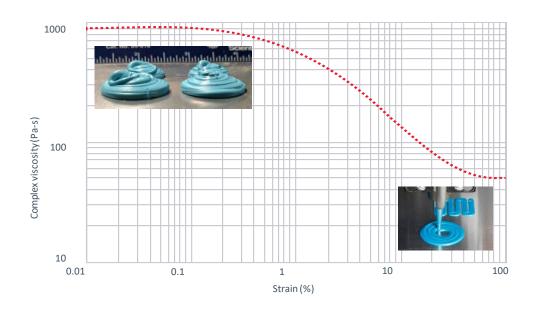
Typical requirements

- Thermally conductive:1~2 W/m.K
- Low viscosity to fillintricate geometries
- Electrically insulative
- Non-flammable: UL94 V-0 or FMVSS 302
- Vibration dampening: material has to remain flexible

Property	DOWSIL™ TC-4605	DOWSIL™ TC-4605 HLV
Thermal conductivity [W/m.K]		1.0
Specific gravity	1.65	
Flammability	UL94 V-0 at 1.5 mm	
Cure time	1 h at 120°C	
Viscosity (mixed) [cP]	2900	1900
Dielectric strength	21	24
[kV/mm]		
Adhesion on anodized AI[MPa]	0.8	1.5

Main difference with a gap filler is with lower viscosity

Higher thermal conductivities under development


The graphic representations are presented here for illustrative purposes only and should not be construed as product specifications.

BATTERY THERMAL MANAGEMENT: GAP FILLERS - DISPENSING

Thixotropic behavior usefulfor

- High-throughput dispense
- Good wetting of the substrate
- Accurate dispense(no afterflow)
- Stay in place, even in vertical position

POWER ELECTRONICS

DIELECTRIC GELS FOR PROTECTING SENSITIVE COMPONENTS

Silicone gels offer remarkably low modulus to protect the even some of the most delicate components against mechanical stress and the effects of thermal cycling.

- Maximum stress-relief
- Self-healing
- Flame-resistant gels with UL 94V flammability classification
- Unique options for solvent and fuel resistance, rapid UV-cure, and enhanced strength in toughened gels

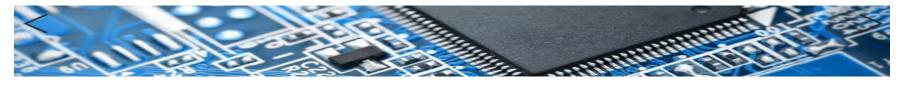
POWER ELECTRONICS —

DIELECTRIC GELS PROVIDE NOVEL SOLUTIONS FOR ENHANCED THERMAL RESISTANCE

Standard

- Room-temperature cure
- Colorless / pigmented
- One- or two-part

Toughened


- Room-temperature / heat cure
- Colorless / pigmented
- Two-part
- Filled for durability
- Primerless adhesion

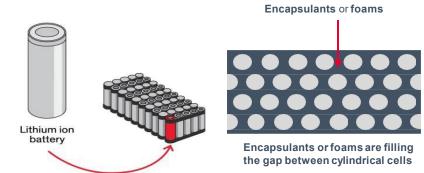
Low temperature

- DOWSIL™ 3-6635 Dielectric Gel down to -60°C
- DOWSIL™ Q3-6575 Dielectric Gel down to -80°C
- DOWSIL™ 3-4155 HV Dielectric Gel

Specialty

- Low volatility
- UV Cure DOWSIL™ X3-6211 Encapsulant
- SYLGARD™ 535 Thixotropic Dielectric Gel
- DOWSIL™ TC-3015 Thermal Gel

BATTERY FIRE PROTECTION — ENCAPSULANTS AND FOAMS


By providing individual cell protection in the case of a thermal event, silicone encapsulants and foams can slow thermal runaway propagation in lithium-ion battery systems.

Typical requirements

- Non-flammable:UI 94 V-0
- Low viscosityto fill intricate geometries
- Vibration dampening:material has to remain flexible
- Electrically insulative
- Permeable to emergency degassing for pressure balancing during a thermal event

Source: NASA Presentation at Sustainable Aircraft Symposium May 2016

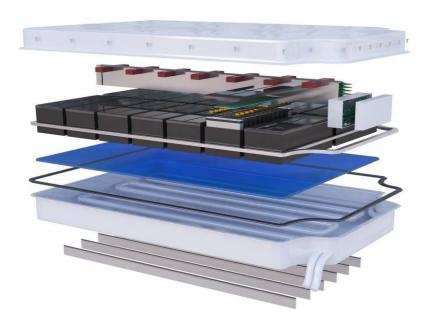
BATTERY FIRE PROTECTION: ENCAPSULANTS AND FOAMS — KEY PROPERTIES

Туре	Material	Specific gravity	Cure condition (at 25°C)	Viscosity (mixed) [cP]
Encapsulant Elastomer SYLGARD ™ 17	SYLGARD ™ 170 Silicone Elastomer	1.37	24 h	2,100
	SYLGARD ™ 170 Fast Cure Silicone Elastomer	1.38	12 min	2,400
Foam	DOWSIL™ 3-6548 RTV Silicone Foam	0.2 ~ 0.4	1.5 min (snap time)	Part A: 50,000 Part B: 60,000

In case of fire protection, silicone foams are a lightweight alternative to traditional encapsulants

The graphic representations are presented here for illustrative purposes only and should not be construed as product specifications.

Flammability test on 3mm-thick DOWSIL™ 3-6548 Foam



BATTERY ASSEMBLY — ADHESIVES

In a battery system, numerous parts have to be assembled together: battery housing, battery modules, cooling plate, ECU, temperatures ensor, heat sinks, PTC heater...

Typical requirements

- Unprimed adhesion to a variety of metallic and plastic substrates
- Curing at room temperature to avoid heat generation in vicinity of the battery cells
- Electrically insulative
- Depending on the application, thermally conductive adhesives can be considered

BATTERY ASSEMBLY: ADHESIVES - FASTER RTCURING

New DOWSIL™ EA-4700 CV Adhesive offers faster room-temperature curing tocustomers.

Two-part, room-temperature vulcanization

- Cure in 2 hours at 25°C
- 20 minute pot life
- Controlled siliconevolatility

Room-temperature adhesion

- Achieve cohesive adhesion within 24 hours
- Durable adhesion to typical substrates

Two-part, room-temperature vulcanization

- 150°Caging
- 85°C/85% RH aging
- Thermal shock

Substrate	Lap shear [MPa]
Die cast Al	2.4
PA	2.0
PBT	2.4
PPS	2.4
PC	2.3
Glass	2.0

Bond line thickness: 1 mm Curing: 1 week at 25°C

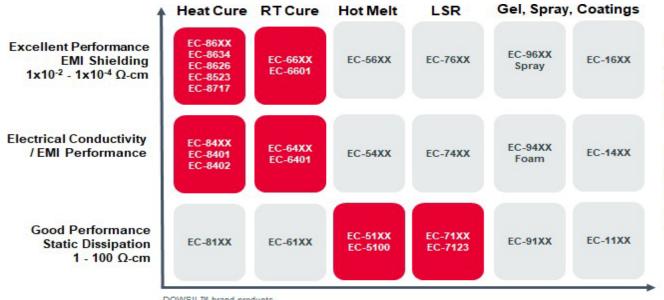
The graphic representations are presented here for illustrative purposes only and should not be construed as product specifications.

ELECTROMAGNETIC SHIELDING: WHERE IS YOUR DESIGN FOCUS?

- Reducing the electromagnetic field in a space by blocking it with barriers made of conductive or magnetic materials.
- EMI shielding can be performed at different levels.
- Many silicone products can be used to help deliver effective EMI shielding.

The unique silicone characteristics, in combination with fillers blends, can deliver customized electrical conductivity.

PCB Design


Module design, material selection and assembly

System design and assembly

DOWSIL EC/EMI SILICONE PORTFOLIO AT A GLANCE

DOWSIL™ brand products

Delivery - multiple productforms

Adhesive, sealant, low modulus elastomer, cure-in-place and form-in-place gasket (FIPG), emulsion, coating, gel, foam, spray

Formulation expertise

- Innovative toolbox of key intermediates, polymers, and additives that can be modified and formulated to fit your needs
- **Expertise in electrically conductive fillers**

The graphic representations are presented here for illustrative purposes only and should not be construed as product specifications.

Dow is your EMI partner

Bring us your challenges— We want to help you design your solutions

Innovative approach

- Close collaboration to help you design the solutions you need
- Deep technical expertise in material design and engineering

Formulation expertise

- Multiple product forms: adhesives, elastomers, gaskets, low-modulus emulsions, coatings
- Innovative toolbox of key intermediates, polymers and additives that can be modified and formulated to fit your needs

Dow is **Your EMI** partner

Bring us your challenges— We want to help you design your solutions

Supply chainintegration

 Backward integration to source materials to build silicone polymers and intermediates

Proven performance

 More than 15 years of electrically conductive adhesive experience in demanding semiconductor markets

Silicone EMI solutions

- Shielding, absorption, grounding
- Shielding effectiveness
- Electrical resistivity
- Filler type
- Mechanical (elongation, strength)
- Thermal stability
- Processing

DOWSIL™ Silicone solutions can help with:

Process optimization

- Energy-saving (Lower temperature of cure, shorter time)
- Minimize substrates preparation
- Reduce equipment maintenance

Product handling optimization

- Storage
- Shelf life
- Dispensing
- Assembly
- Cure

Improving product robustness

- Void-free
- Vertical holding
- Cure
- Adhesion

Seek

TogetherTM

THANK YOU

The information contained in this communication does not constitute an offer, does not give rise to binding obligations, and is subject to change without notice to you. The creation of binding obligations will occur only if an agreement is signed by authorized representatives of Dow and your company. Any reference to competitor materials contained in this communication is not an endorsement of those materials by Dow or an endorsement by the competitor of Dow materials.

To the fullest extent permitted by applicable law, Dow disclaims any and all liability with respect to your use or reliance upon the information. **DOW DOES NOT MAKE ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, WITH RESPECT TO THE UTILITY OR COMPLETENESS OF THE INFORMATION AND DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.**

[®]™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

© 2023 The Dow Chemical Company. All rights reserved.

2000024822-6342 Form No. 11-4060-01-0823 S2D